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ABSTRACT

Recent development of several unsteady supersonic methods

for computations of airloads for elastic bodies of revolution,

asymmetric bodies 3nd body-wing configurations are reported.

These methods include the Harmonic Potential Panel (HPP) method,

the Bundle Triplet Method (BTM) and the combined method of BTM

and the Harmonic Gradient Method (HGM) for body-wing

combinations. All methods are based on the generic Harmonic-

Gradient (H-G) model, which is essential in providing accurate

solutions in the full frequency domain and the low Mach number

range.

Extensive comparisons of computed results obtained from

these methods show good correlations with existing data.

Comparison examples range from simple cones and ogive bodies to

Saturn SA-l configuration, to the cylindrical panel membrance and

to the NACA wing-body combinations. Cases computed yield steady

and unsteady pressures, generalized forces, stability

derivatives, aerodynamic dampings and divergence and flutter

boundaries for these configurations.

The developed methods have been validated with existing

theories or measured data. For supersonic aeroelastic analysis,

these methods yield results that are accurate and cost-effective,

thus rendering them very favorable for technology transfer and

industry applications.
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CHAPTER 1

INTRODUCTION

Long slender missiles or rockets at cruising supersonic

speeds are susceptible to a number of aeroelastic instabilities.

First, it is known that the stability and control characteristics

of high speed flexible bodies may be significantly influenced by

the distortion of the structure under transient loading

conditions. Second, the body/fin configurations are likely to

flutter as a result of the properly phased short-period rigid

body-fin mode and the body bending mode. In fact, the earlier

flutter incident of the British JTVI ramjet missile in 1955, as

shown in Figs. 1 and 2, is one such example (Ref. 1).

Furthermore, the problem of the store-airframe interaction,

during the cruise and/or maneuver phase, of modern aircraft has

been a major concern for design and performance. The effects of

this type of interaction could sometimes change the airload, and

hence the wing flutter characteristics, rather drastically. For

example, problems such as stores in pitch-yaw combined

oscillations and the tip-missile influence are among the critical

factors related to aircraft flutter. Clearly, the prediction of

these boundaries relies almost exclusively on the unsteady

aerodynamic inputs. The objective of the present work is

therefore to provide a generalized Harmonic Potential Panel (HPP)

method for computing the unsteady aerodynamics of arbitrary

flexible bodies and body-fin configurations in the supersonic

flow regime.

1



1.1 Survey of Literature

Currently, several panel methods have claimed success for

predictions of the steady aerodynamics for wing-body combinations

in the supersonic flow regime (Refs. 2 and 3). In recent years,

computational methods for unsteady supersonic flow prediction

have been extensively investigated (Ref. 4). However, these

approaches are mostly formulated for wing planform calculations.

On the other hand, the investigation of unsteady supersonic flow

for oscillating bodies in the past has been mostly based on

slender body or not-so-slender body theories for rigid-body

oscillations in the low-frequency range.

In the slender body limit the Adams and Sears theory (Ref.

5) was extended to unsteady flow by Garrick (Ref. 6). Although

Garrick's theory is valid for all frequencies and for flexible

bodies, it has the limitations of being independent of the Mach

number and it is found too inaccurate for bodies of practical

thickness.

In the not-so-slender body limit, Lansing (Ref. 7) used a

frequency expansion procedure for treatment of rigid-body

oscillations, and Platzer and Sherer (Ref. 8) applied the

linearized method of characteristics (LMOC) for rigid bodies in

low-frequency oscillations. Tobak and Wehrend (Ref. 9) extended

Van Dyke's first- and second-order theories (Ref. 10) to unsteady

flow for cones. Bond and Packard's theory (Ref. 11) for flexible

bodies appeared in 1961; however, it was found to involve

2



erroneous boundary conditions, as was pointed out by Hoffman and

Platzer (Ref. 12).

It appears that little progress has been made in the

development of a viable computational method for wing-body or

body-fin combinations, for unsteady supersonic aerodynamic

predictions, which is uniformly valid in the complete frequency

domain. Hence, the present work consists of the development of a

viable method in the full-frequency domain for computations of

the unsteady aerodynamics of arbitrary flexible bodies in the

supersonic flow regime.

1.2 Outline

For bodies in pitch motion, the proper choice of the

coordinate system has been subject to some controversy in the

past. In Chapter 2 the formulations in the wind-fixed, the body-

fixed (Appendix A), and the pseudo-wind-fixed coordinate systems

are presented.

In Chapter 3 the solution procedure for the steady mean flow

problem is developed. The linearized equation for the mean flow

is solved by using the Karman and Moore procedure (Ref. 13). The

* nonlinear equation for the mean flow is solved according to Van

Dyke's iterative scheme (Ref. 10). Computed mean-flow velocities

and pressures for a cone-cylinder, a parabolic-ogive, and a

* parabolic-ogive-boattail bodies are presented.

In Chapter 4 the solutions of the equations in various

coordinate systems as derived in Chapter 2 are obtained. The

* Harmonic Gradient concept is applied to the dipole strength so

that the number of panel elements becomes least affected by the

3
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given Mach number and reduced frequency. It is shown that when

the wind-fixed system is pplied in a straight-forward manner,

the solution obtained is totally contaminated by a spurious

leading-edge singularity. In Appendix C, it is shown that such

singularity is totally removed in a conical coordinate system.

Effects of frequency and mean-flow nonlinearities are

investigated in the body-fixed coordinate system. Comparisons of

the present results with NASA'S measured data (Refs. 14 and 15)

of the aerodynamic damping coefficients for different bodies are

shown.

In Chapter 5 the equations for flutter computations are

presented. Flutter boundaries for a 7.5' cone are determined by

using the linear and nonlinear method. Comparisons of the

present results with NASA's measured data (Ref. 16) are

presented.

In Chapter 6 the formulation for bodies with asymmetric

cross-section is presented in the body-fixed coordinate system.

For ease of application a spline panel method is used to

determine the pressure and forces acting on the body.

Comparisons of the mean flow pressures and static forces for

elliptic cones with those computed by USSAERO code (Ref. 2) show

clear limitations of the present method when the asymmetry in the

body cross-section increases.

In Chapter 7, the development of the Bundle Triplet Method

(BTM) is presented. The BTM is a more general method in

treatments of asymmetric bodies in that the line doublet

formulation of the spline panel method is generated to a

4



generalized triplet one. The body cross-section is also divided

into the so-called "pie sectors" but a line source and a line

doublet are superposed in each sectors; thus forming a bundle of

triplet lines. A least square procedure is used to account for

the interference between sectors. Substantial improvements are

found in the results over those obtained using the methods in

Chapter 6. Moreover, the BTM is validated through the

application cases of cylindrical panel flutter in which the

generalized forces obtained are in excellent agreement with exact

theories in the higher frequency range and for higher order

modes.

In Chapter 8, the formulation for the body-wing combinations

is presented. The acceleration potential version of the Harmonic

Gradient Method (AHGM) is in combined use for computations of the

body-wing aerodynamics. The present formulation not only allows

the computed domain to be confined to the surface panels but it

also directly yields the unsteady pressure on the wing surface.

Therefore, the present method is a very effective one in

treatments of unsteady aerodynamics over body-wing

configurations.

Finally, conclusions from the present investigation and

recommendations for future work are presented in Chapter 9.

In what follows, all variables are nondimensionalized by the

true length, and time scales defined by the body length, and the

body length divided by the freestream velocity, respectively.

5



CHAPTER 2

FORMULATION

In this chapter, the formulation for a body of revolution

performing bending oscillations is presented.

The fluid flow is assumed to be inviscid and isentropic.

Thus, the fluid velocity V can be defined by the scalar potential

Q(x' ,y' ,z' ,t'), i.e.

V = 70 (2.1)

The governing equation for the potential 0 is the full

potential equation

a2 72 0 = Ott) + a, (Q)2 + (7Q.7)(7Q)2 (2.2)

where "a" is the local speed of sound given by

a2 1 - (f-l) or' + [(70)2  - i] (2.3)

The time coordinate above, t', is based on a spatial

* coordinate system, (x',y',z'), that is fixed with respect to the

fluid at infinity.

It is known that various linear'ized small disturbance

* equations can be derived from Eqs. (2.2) and (2.3) depending on

the coordinate system chosen. Their formulations according to

the wind-fixed, the body-fixed and the pseudo-wind-fixed

coordinate systems are discussed in order.

6
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2.1 Wind-Fixed Coordinate System

If a cylindrical coordinate system with its x'-axis parallel

to the freestream velocity is adopted (see Fig. 3) then the full

potential can be written as

( (x',r',e',t') = x' + ' (x',r',',t') (2.4)

where OKx' ,r' ,e' ,t') is the perturbation potential.

Substituting Eq. (2.4) into Eqs. (2.2) and (2.3) and

retaining only linear terms in 0 yields the following linear

equation

1 - M2 ) oxx, +  0r' + -- L r - M 0 M20 : 0 (
(lM 2 ~r~ ~r'-2M 2 (b~t -M 2 $ t = 0 (2.5)

For a body of revolution in unsteady motion with small

amplitude of oscillation the perturbation potential can be split

into two parts; the mean flow, zero-angle-of-attack, potential,

#0 (x',r'), and the unsteady flow potential, ol(x',r')cosO'

O(x',r',e',t') = #0 (x',r') + 6(t')Ol(x',r') cose' (2.6)

where 6(t') is the instantaneous amplitude of oscillation. For

simple harmonic oscillations 6(t')=Joeikt' , where k is the

reduced frequency. Substituting these relations into Eq. (2.5)

and collecting terms of order one and 60, one obtains

11 - M
2
) 0Ox'x' + + 1 O0 (2.7)

7



2 +1(1 - ) ixx' + ±l' ' --' r

1r

, - 2ikM 2  01. + M 2 k 2 
1  = 0 (2.8)

These are the governing equations in the wind-fixed coordinate

system for 0o and 01.

2.1.1 Boundary Conditions

Physical considerations suggest that all perturbations

should vanish upstream of the Mach wave emanating from the body

apex,

0,(x',r') 0ox, (x',r') = r (x',r') 0

]at x'-pr2:S

0,(x',r') 4,x, (x',r') = r, x',r' 0
(2.9)

and that at any instant the flow must be tangent to the body

surface. In the wind-fixed coordinate system the latter

condition can be expressed as

as + 70.VS = 0 at S = 0 (2.10)
at

where S(x',r',9',t')=O describes the body surface. For a body of

revolution performing small amplitude bending oscillations, the

equation of the body surface can be simplified (Ref. 17) to

S(x', ',e' , t') = r'-R(x') + 6(t')g(x')cose' + 0(62) = 0

(2.11)

where g(x') is the normalized natural mode shape.

8

S



Now, substituting Eqs. (2.11), (2.4) and (2.6) into (2.10)

yields

- R' (l+0o,,) + 6(t')cose'

[g' (1+0,) - R' 0 x1 + 01 + ikg] + 0(6 ) = 0 (2.12)

at r' = R(x')-&(t')g(x')cose'

It is now necessary to remove the implicit dependence on

6(t') in the potential functions by expressing the boundary

condition at the mean position (Ref. 17) r'=R(x'). This is

accomplished by using a Taylor-series expansion about r'=R(x').

Performing this expansion in Eq. (2.12) and collecting terms of

order one and 6. , yields

or, - R'0ox, = R' at r' = R(x') (2.13)

O , - R '0 1 x, : -g ' (x ' ( 1 + € o .,) + g (x ') .

(Oo r' R'#o x'r') - ikg(x')

at r' = R(x') (2.14)

2.1.2 Pressure Coefficient

Based on the time-dependent Bernoulli equation, the exact

isentropic pressure coefficient is expanded to yield the mean

flow and unsteady flow pressure coefficients,

Cp = CO + C1 6 o  el It'cose' (2.15)

and after Taylor-series expansion about the mean position

r'=R(x'), CO and C' can be expressed as

9



C S at r'=''(x) (2.16)
)(M2

C' =-2S0  ((1+00.1) 0I. + oor'OIr' + ik~l - g(x')

[ ¢ o ' r ' (' + # o ' ) + O o , r ,r O o r ' ] } a t r = R ( x ) ( 2 .1 7 )

and

S M2(2€o0,x + 0 , + 2 2.18)
2 

1

* As shown in Appendix C, in the slender body approximation,

Oor is given by

RR'
Or' r

and its derivatives with respect to x' and r' are respectively

0 R'2 + RR'' RR'
OrIxIr , and €or , rI

At the body apex both terms behave like

R '(0)
R( 0)

thus, if R'(0) does not vanish, the second order derivatives

Cr.' and Oor' r are singular at the body apex since R(O)=O.

Hence, the second order derivative terms in Eqs. (2.14) and

'2.17) associated with g(x') will result in an apex singularity

10
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if g(O) does not vanish. The cause of this apex singularity was

discussed by Platzer and Liu (Ref. 17), where they pointed out

that it was due to the assumption that &2g 2 (x')/R 2 (x')<l was

not uniformly valid at the apex for a nonvanishing g(O).

Apparently, this singularity is inherent to the thickness part of S

the solution, since in the slender body limit, Hoffman and

Platzer (Ref. 12) have shown that the unsteady pressure remains

regular. It is shown in Appendix C that this finding also 0

applies to not-so-slender bodies. Hence, to circumvent this

singularity in the formulation, the obvious choice is the body-

fixed coordinate system.

2.2 Body-Fixed Coordinate System

As shown in Fig. 3 the body-fixed coordinate system requires

that the x-axis remain, at all times, the axis of the body,

whereby each right cross section is circular and contains the r-

axis.

Let h(x,t') be the instantaneous normal displacement of the

body, i.e.

h(x,t') = 3o e i k t '  g(x) (2.19)

The full potential in a cartesian coordinate system (x,y,z)

(see Appendix A) can be written as:

O(x,y,z,t) = x + hx(x,t)z + D(x,y,z,t) (2.20)

The linearized equation for 0 as derived in Appendix A is

11



0,, - 2hX xz×x - hx + 4YY + hx Oz

* M2Lt - 0- zOx + ht 0~ + ht 0

+ 2 0 xt - 2hxXt Z - 2hxx ZOx t + 2hxt Dz

+ 2hx0zt - 2hxtz$xx + 2htlxz + OXX(l - 2hxxz)

- h×x xz + hxb z + 20x$hx] (2.21)

Clearly, it can be seen that the linearized equation in the body-

fixed coordinate system is different from the one obtained in the

wind-fixed system.

As derived in Appendix A, Eqs. (A.18) and (A.19), the

governing equations for 0o and 96 for a body of revolution in the

cylindrical coordinates (x,r,O) are

(1 - M
2

) @Oox + @Orr + - $Orr - 0 (2.22)

(1 - 9'2 ) xx + 01rr + 1 01r

1 - M k2 + = G (g,$ o )  (2.23)
_ 0 2ikM2 01 X

where G1 represents the mean flow and the flexible mode

interaction and is given by

[ a a ,
Gl(g,@o) = M2  2--(or - ro --)(g' + ikg)

- (€or - x -x ( g k 2  + g') + r -(3 x g

+ g''(€ 0  r - 0Or )  (2.24)

12



Eq. (2 .2 3 ) contains Van Dyke's (Ref. 10) steady angle of

attack equation and Hoffman and Platzer's (Ref. 18) low-frequency

equation as special cases. It should be pointed out that Eq.

(2.23) for steady angle of attack differs from McCanless' (Ref.

19) equation which is clearly in error since his formulation

starts from a linearized equation rather than the full potential

equation.

2.2.1 Boundary Conditions

The boundary conditions at the apex are the same as those

given by Eq. (2.9), while the tangential boundary condition in

the body-fixed system states that the relative normal velocity of

a fluid particle to the body surface is zero at any instant, i.e.

(7Q - V,)-n = 0 at S = 0 (2.25)

where V. is the velocity of the body surface, S is the body

surface which for a body of revolution in a cylindrical

coordinate system can be expressed as

S = r-R(x) = 0 (2.26)

and n is the outward normal to the body surface. For a body

performing bending oscillations, VB can be shown to be

Va = i(t)[g' Rcose e. - g(cose er - sine ee)] (2.27)

The total velocity in this curvilinear coordinate system is

obtained (see Appendix A) as

13



70 = [I + , - 6(t) g'' €oxRcose + 6(t) 1 xcoseIex

+ 100r + 6(t)€ircase + g' 6(t) cose]er

1
- 6(t)[g' sine + j 01 sine]e e  (2.28)

Now substituting Eqs. (2.28) and (2.27) into (2.25) yields

1 - 6(t)g'' R cos + + 5(t)0 1 .cose

- S(t)g' R cose](- R') + Oor

+ '65t)g' + &(t)Oir + '(t)g) cos e = 0 at r=R(x)

(2.29)

where for simple harmonic oscillations i(t)=ik6(t) and

6=joejkt. Substituting this relation into Eq. (2.29) and

collecting like terms of order one and 60, yield

0or - R'ocx = R' (2.30)

01, - R'0IX - g'-ik(g + g'RR') g''RR'€0o

at r=R(x) (2.31)

Eq. (2.31) reduces, to the Lighthill's (Ref. 20) boundary

conditions when the second-order terms are neglected.

14



2.2.2 Pressure Coefficient

The exact isentropic pressure coefficient cin be expressed S

as

2P 2 + - (i- I [ -IM 2 ((VQ)Z + 20 t -i-1 1 (2.32)

where t' is the nondimensional time in the wind-fixed system.

The partial derivative with respect to t' as measured by an

observer moving with the harmonically oscillating body-fixed

system is given by

ao -Q ,. o +e 1 ao 0
at -t g'(t)rcose-o + g(t)(cos- - sin%.-)

(2.33)

Note that Eqs. (2.22), (2.31) and (2.33) contain Revell's S

equations (Ref. 21) for rigid-body oscillations as a special

case.

Substituting Eqs. (2.33) and (2.28) into (2.32) and, after

binomial expansion, collecting terms of order so the pressure

coefficient for unsteady flow C' can be written as

PS

C - 2So{ ( + o - (1 + 00g'

+ Or( ir + g') + ik (go r + - g'R 0 x)} (2.34)

at r=R(x) 0

were So is given by Eq. (2.18) and the pressure coefficient for

the mean flow CO by Eq. (2.16). 5
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Eqs. (2.23), (2.31) and (2.34) together with the Mach wave

conditions at the apex, Eq. (2.9), constitute the formal

formulation according to the body-fixed coordinate system.

However, to solve Eq. (2.23) is rather tedious. For this reason,

a justification for simplified form of this equation is sought.

Van Dyke (Ref. 10) has shown that his "first-order" steady cross

flow equation,

S (i - i ) ~1x + + rr + t -rl 0

is superior in yielding better results to the linearized

equation, which contains one extra term, in the higher Mach

number range. For bodies in low-frequency oscillations, Platzer

et al. (Ref. 8) and Tobak et al. (Ref. 9) adopted the first-order

equation formulation to obtain stability derivatives. Their

results were found in good agreement with computed results using

Euler's equations. Thus, extending Van Dyke's first-order

equation further in the general frequency domain amounts to

neglecting the interaction terms Gl (g, 0 ) in Eq. (2.23). In this

way, the linearized wave equation is employed for the present

formulation. Admittedly, this level of approximation is

injustifiable mathematically. Nevertheless, the interaction

effect due to the term G, can be recovered formally by a Green

function approach as proposed in Chapter 4.

2.3 Pseudo-Wind-Fixed Coordinate System

The present coordinate system is a hybrid one. The x-axis

chosen here is not the body axis, but remains rigid in motion,

16



thus avoiding the complexity of using the curvilinear

coordinates. Meanwhile, the front-end of the bending mode g(x)

when expressed in this coordinate is required to attach to the

origin of the x-axis at all times, as indicated in Fig. 3. In

this way, the apex singularity can be totally removed.

Admittedly, such a formulation for singularity removal is not

totally justifiable but intended to serve as a regular

approximation.

Hence, the linearized equation can be obtained in the same

form as Eq. (2.23) by letting g(x)=x-x o  in Eq. (2.24), and G i  is

replaced by G,(g,€o) as follows

G 2 (g, 0 ) = M 2 {2 0oxr + k2 [r 0ox - (x-xo) 0o, + 2ik

- roo. + (X-xo)Oorx} (2.35)

where x o is a point chosen on the x-axis such that p(O)=O. Since

this equation is a degenerate form of the body-fixed equation,

the justification for neglecting G2 terms also remains valid

here. The mode shape g(x) expressed in this system now becomes

p(x), where

p(x) = g(x) - (xo-x) 
(2.36)

The potential is split into two components,

0, (x,r) = ,(x,r) + X(x,r) (2.37)
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where o and % represent the rigid part (x-axis motion) and the

flexible part (p(x) motion) of the potential, respectively.

Thus, the boundary conditions, after Taylor-expansion transferal

to the mean surface, become, at r=R(x)

;r - R) Vx = - l-ik(x-x o  + RR') at r=R(x) (2.38)

\r  - R' xx  = - p'(x) (1 + 0ox - ikp(x)

+ P(X)#orr - p(x)R'0oxr at r=R(x) (2.39)

Notice that Eq. (2.39) is essentially the same as Eq. (2.14)

of the wind-fixed system with g(x) replaced by p(x). The

pressure coefficients Cir and Cl f , corresponding respectively

to v and \, read

Clr= - 2So 1 + Oox);x + #Or( r + 1)
p

+ ik(w - ROO, + (X-Xo)#or)]} at r=R(x) (2.40)

and

Clf =- 2S)'{(i + Oo.Xx + Oorxr + ikx - p(x)

p

[oxr + OOx#oxr + #or#Orr]} at r=R(x) (2.41)

where

C1 = C i r  + C i f  
(2.42)

p p p
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In the present system p(O)=O. Therefore, this condition

guarantees, all second-order coupling terms in the bracket of Eq.

(2.41) when multiplied by p(x) become necessarily finite at the

apex.

It should be noted that although the apex singularity is

removed in the pseudo-wing-fixed system Eq. (2.41) is still not

uniformly valid, because these second-order derivative terms will

bear local singularities at other body slope discontinuities such

as the cone-cylinder junctions. In the case of the body-fixed

system, however, such singularities do not appear, since the

unsteady pressures only involve first-order derivative terms.

2.4 Generalized Forces and Stability Derivatives

One of the main purposes of the unsteady aerodynamic

computations is to determine the generalized forces ) which

appear in the Lagrange's equations of motion for the structural

system. There, the generalized force Q,, represents the work

done by the aerodynamic force FJ per unit displacement g' with

all other generalized coordinates fixed.

In the present case, once the unsteady pressure coefficients

as provided by Eqs. (2.17), (2.34) or (2.42) are determined, the

generalized forces can be computed according to

QrJ S 1 ff C (J )  R~g( I ) + RR'g'(I)]cos2ededx

(2.43)

where g(l> is the Ith structural mode; C1 '1 is the pressure

coefficient due to the Jth mode of motion and Sref is the
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reference area of the body. Here, Sref is defined as the based

area for the open-end bodies and the maximum cross-section area

for the closed-end bodies.

As will be shown in Chapter 5, the generalized forces

resulting from the unsteady flow caused by the changing

deformations of the body surface occur in the equations of

flutt-r. Thus the determination of reliable flutter boundaries

depends on the accurate evaluation of the generalized forces.

Once the generalized forces have been determined the

stability derivatives for rigid low-frequency body motion can be

determined in the following form

CN& z -RE(Q 1 2 )

CM& = -RE(Q 2 2 )

CN& + CNq -IM(Ql 2 )/k 
(2.44)

CM& + CMq = -IM(Q 2 2 )/k

SCL& = -RE(Q 1 1 )/k
2

CM& = -RE(Qsl)/k 2

where "1" is the plunging mode and "2" the pitching mode, and RE

means the real part and IM the imaginary part.
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CHAPTER 3

STEADY MEAN FLOW

The purpose of solving the steady mean flow problem is two-

fold. First, it is necessary to obtain the mean flow velocities

on the body in order to proceed with the unsteady flow

computations because the unsteady flow potential and the unsteady

pressure coefficient depend on the mean flow solution. Second,

it is important to establish a robust unsteady computational

procedure, which can be first established by the steady mean flow

studies as a primary step, as the steady mean-flow is provided

with more readily available data for result verifications.

It has been noted that first-order theory predicts the cross

flow more accurately than the axial flow because smaller

disturbances, in the convective direction, are involved. This

suggests that it is more important to refine the axial flow than

the cross flow. In fact this type of hybrid theory has been

suggested previously by Van Dyke (Ref. 10) involving a linear-

equation model for the cross flow and a nonlinear-equation model

for the mean flow.

For the cross-flow model the use of this hybrid theory can

only be justified by previous numerical studies. In the past Van

Dyke (Ref. 10) obtained accurate results for bodies at steady

angle of attack, and Tobak and Wehrend (Ref. 9) obtained results

for the static and dynamic stability derivatives for cones, which

are in good agreement with those obtained based on the Euler's

solution. Thus, in this chapter, together with the solution of
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the linear equation for the mean flow, Eq. (2.7), a nonlinear

equation for the mean flow is derived. Its solution, by

employing an iterative procedure first suggested by Van Dyke, is

presented. In the latter development and for legends in Figures

presented, this unsteady hybrid model is termed "nonlinear".

3.1 Solution of the Linear Equation

The governing equation for the mean flow as derived in

Chapter 2, Eq. (2.7) can be written as:

(1 - x orr - Mor : 0 (3.1)

Along the apex Mach wave and on the body surface the

boundary conditions are:

= = Or= 0 at x - Pr < 0 (3.2)

Oor - R' Oo. = R' at r = R(x) (3.3)

Since Eq. (3.1) is linear, it admits superposition of

solutions. Therefore, for a body of revolution, whoie upstream

pointed end is at x=O, the solution to Eq. (3.1) can be sought as

a superposition of supersonic sources along the x-axis. The

potential at (x,r) can be expressed as (Ref. 13)

x-fir

,o(X,r) - x f(f) di (3.4)

0 (x-C)
2-8 2 r2

where I denotes the distributed source location along the x-axis

and f(f) is the source strength at C.
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The velocity components, after differentiation of Eq. (3.4),

are given by

€o~(x,r) : f_ fx-rf x-§r f'(1)df

J 0 x( - i J 2 _ 2 r

Oor x, ) f x-Pr (x-1)f'(?)d1

o (x- ) 2 - 2 r 2  (3.5)

Eqs. (3.4) and (3.5) satisfy the conditions given by Eq.

(3.2) if f(O)=O and the source strength function f will be

determined from the tangency condition, Eq. (3.3). This leads to

a Volterra integral equation, which can, in general, only be

solved numerically. The procedure introduced by von Karman and

Moore (Ref. 13) proceeds by replacing the body by one consisting

of a head cone and a sequence of truncated cones. The procedure

is clearly described in the standard texts such as Sauer (Ref.

22) and Ferri (Ref. 23). Its generalization to the unsteady

problems is described in the next chapter.

3.2 The Nonlinear Equation and Its Solution

A nonlinear equation for the mean flow perturbation

potential €0 (x,r) can be obtained by starting with the full

potential as Q(x,r,e)=x+¢o(x,r). Substituting this expression

into Eqs. (2.2) and (2.3) yields
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1z -_M2 r + 1(1 -M2 ~ o × orr + = 2 ( ( 0 xC~r x o r 2t- Or 2 2 0 rr r 0

(200,, + 02x + 02 )

+ 20or oxr (1 + 0ox (3.6)

+ x(26Q + 02) + 02r~Or

According to Van Dyke (Ref. 10), Eq. (3.6) can be solved by

an iterative procedure. Letting L(.) be the left-hand side

operator and R(.) the right-hand side operator, Eq. (3.6) can be

simply expressed as

L(00) = R( 00) (3.7)

where the potential To is the first-order iteration obtained by •

solving the linearized equation L('0 )=O. Making use of this

fact, the right-hand side R(7 0 ) can be expressed as

R( 0  Mi2 (20 Oo ro + (2 + 1o ) M2 + 9r r 0o2 (3.8)

+ 2 -2 -i -

2 00Oxx Or + 20OXr~ox#or + (1 OX 0

For the second order iteration all the triple products in

Eq. (3.8) can be neglected except the term Torre~t, which,

as can be shown from the slender-body theory, is of the same

order as the other two quadratic terms. Thus, the equation for

the second-order iteration can be written as
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0) M2  [20ox0or + [2 + (1-l)M 2 1 oxx ox + 0or r r

(3.9)

To solve Eq. (3.9) Van Dyke's particular solution 0 is employed.

r -

M2 o 0 x ( + Nr 0o,) - 0 0 (3.10)

where N=(I+)M 2 /[2(M 2 -I)]. It should be noted that v0

when substituted on the left-hand side of Eq. (3.9), besides

accounting for all the terms on the right-hand side, also gives

some triple products involving x derivatives of T.. These

triple product terms are of order equal to or higher than those

terms already neglected in Eq. (3.8). Hence, for the second

*order iteration, v. can be considered as an exact particular

solution. Then, 0o can be expressed as 0o=Xo+vo, where X0

satisfies L(Xo)=O.

*Bath potential 0o and T. must satisfy the Mach wave

condition Eq. (3.2), this dictates that both vo and X0 should

also satisfy the same condition independently. The problem of Xo

* is just the first order problem, with the tangency condition Eq.

(3.3) replaced by
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Xor (x, r) - R' Xo0  (x, r) = R'( 
1+ o (x, r)) (3.11)

- kDr(x,r) at r = R(x)

The complete second order perturbation velocities are found

as the sums of the contributions from wo and Xo. Then, the

pressure coefficient can be calculated according to Eq. (2.16).

3.3 Results and Discussions

To demonstrate the present method and to validate its

procedures several computed cases are presented: the mean flow

total velocity for a cone-cylinder, mean flow pressures for a

parabolic-ogive, and an ogive-cylinder-boattail bodies are shown 0

as examples.

Figure 4 demonstrates that the present linear method yields

correct values for the velocity. It is seen that the present

result is in good agreement with the USSAERO result as well as

those obtained by other theories (see Ref. 10) for a cone-

cylinder body. The deviation of USSAERO result on the aft-

cylinder is probably caused by an erroneous wave influence

generated by the lower junction of the cone-cylinder. In Figs. 5

and 6 the linear and the nonlinear results are compared with

those computed by USSAERO code, and by the exact method of

characteristics (Ref. 24), for a 26% thick ogive-cylinder body at

Mach numbers of 2.0 and 3.0, respectively. The nonlinear results

compare very well with those computed by the exact method of

characteristics. It is seen that the nonlinear effect due to the

thickness is substantial from the apex to mid-body.
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Next, the hybrid theory (nonlinear iterative scheme for the

mean flow and linear for the cross flow) is applied to a 16%

tnick ogive-cylinder-boattail body at Mach number of 3.0 and

placed at moderate angles of attack (ao=3.2 and 6.3). Again,

very good correlations are found with the computed results of the

Parabolized Navier-Stokes (PNS) code and the Euler code (Ref. 25)

for both cases in Figs. 7a and 7b. Considerable deviations

between the linear and the nonlinear results are again observed

particularly on the windward side of the ogive part of the body.

It can be concluded that, as long as the flow remains

attached, the present nonlinear method should yield results in

favorable agreement with those obtained by computational methods

in the supersonic Mach number range. This agreement also implies

that for the given range of Mach number, body thickness and

angle-of-attack, effects of rotationality as introduced by

supersonic shock waves are nearly inconsequential.
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CHAPTER 4

UNSTEADv FLOW COMPUTATIONS

In this chapter, the method of solution for a uniform flow

over a body performing bending oscillations is presented. The

formulations in the wind-fixed, body-fixed and pseudo-wind-fixed

coordinate systems, as described in Chapter 2, are used. To

compute the oscillatory flow in the cross plane, a line doublet

distribution scheme (see Fig. 8) is adopted. The strength of the

doublet along the axis is modeled according to the Harmonic

Gradient model for treating wing planforms (Ref. 4) This model

is capable of rendering the unsteady potential solution and its

convective gradient uniformly valid throughout the complete

frequency domain.

To verify the present method, numerical examples for various

body shapes are presented, in terms of unsteady pressures,

stability derivatives, generalized forces, and aerodynamic

damping, and compared with various theories and measured data.

4.1 The Integral Solution

The general integral solution to the unuteady wave equation,

e.g. Eq. (2.8) or Eq. (2.23), can be obtained by applying the

Green function method.

' I x-flr
0 (xr) F(c)- K(x-1,Ar)d1 + O (4.1)

0

* where
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€4 2 f G, Oo)(1,7),g) K(x-C, Ar)dqdf

A

The function Gn(¢O,g) is the inhomogeneous term of the unsteady

wave equation, G1 in Eq. (2.23) or G2 in Eq. (2.35) and the area

A is defined in the domain downstream of the Mach wave, emanating

from the apex, excluding the body, i.e.

R(x) S q :S 1/§ for 0 < I :S 1

0 S 17 S 9/ , for 1 : 1 5 -

The first term of Eq. (4.1) represents the linear unsteady

solution as modeled by the distribution of doublets along the x-

axis, and the second term, 0., the mean flow-mode shape

interaction.

In the present analysis, we shall drop the term 0, in Eq.

(4.1) for simplicity. But in principle 0. can be included in the

analysis since 0o is known from the mean flow computation and

g(x) is given. The kernel function K is an elementary solution

of Eq. (2.6) (see Garrick, Ref. 26)

K(x-C, pr) = e-iA(X-1) cos>J? (4.2)
R

where R is now the hyperbolic distance and is defined as

R = (x-l 2--l2 r2 , p = kM/p2 and > = kM/g 2

and F(1) is the dipole strength to be sought.
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Now, integrating Eq. (4.1) by parts, and making use of the

Mach wave condition at x=fr, yields

-i 6 x°]---S(x,,Pr dxo  (4.3)
x o

where

,__r) o  cos>.R
OrS(x o , 6 r )  r r dr

x0 = x-I and R = _
2 -; 2 r7 (4.4)

Notice that from this point onward "xo" is used to represent

the relative dipole coordinate.

4.2 Harmonic Gradient Model

The solution of Eq. (4.3) is based on a line-doublet panel

method similar to Karman and Moore's (Ref. 13) procedure for the

source solution formulation to the mean flow. Thus, a set of N

points with coordinates (xj,r 3 ,O) j=l,...N are distributed on

the body surface, such that xj+>x j . These points are called the

control points. To determine the induced potential at each

control point the intersection of the inverse Mach cone, from the

control point (xj,rj,O), with the body axis is first determined,

(see Fig. 8). The set of points so obtained are given by

j+1 =xj-irj j=l,...N, with 11 being the body apex. The segment

between each two points (1 , j+j ) is called a panel. Each panel
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is assumed to have different dipole strength Fj(1). The

potential 01 at (xj , r. ) can then be expressed as

¢ (xi ,r3 ) 1 J [F, (X, -x0  ) e 0x
i=1 Xj 

1
i

3 S(x Arj )dx o  (4.5)

In order to achieve computational accuracy and effectiveness

for handling solutions in the high-frequency range, it is

important to render the doublet solution and its convective

gradient uniformly valid throughout the complete frequency

domain. This is to say that the characteristics of the doublet

solution should be spatially harmonic. Therefore, the panel size

from 1, to Ii.1 is regulated and maintained compatible to the

wave number generated along the body in oscillation (see Fig. 9).

This is the Harmonic Gradient concept introduced by Chen and Liu 4

for unsteady supersonic computations. Following this concept,

one can model the integrand of Eq. (4.5) in a similar manner,

i.e.,

a [Fi(x -xo)e iMx0] = [ai(xj-xo) + bi]el/tXO (4.6)ax °  i

where a i and b i on the right-hand side are complex constants

representing a linear-harmonic doublet gradient.
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4.3 Evaluation of Velocities

*With the Harmonic Gradient (H-G) model of Eq. (4.6), Eq.

(4.5) can be differentiated to obtain the discretized velocities

0,, and 01r' i.e.

- 7r e -i Lx -(x ,rj)dx, (4.7)

r (x ,rj) - [ai(xj-xo) + b1l]e iLxo

(32 S(xo,frj)dxo  
(4.8)

For detailed evaluation of these integrals one is referred

to Appendix B. There it is shown that Eqs. (4.5), (4.7) and

(4.8) can be integrated numerically by employing Lashka's (Ref.

27) exponential substitution scheme.

• 4.4 Method of Solution

After Eqs (4.5), (4.7) and (4.8) have been integrated, the

potential and the velocities at (xj,rj) can be expressed as

functions of the ai's and b, 's. However, the bi's can be

determined as functions of the ai s by imposing the condition

that the potential must be continuous between each two adjacent
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panels. With this condition the following recurrence formula can

be established, i.e.

n -I

b- $^-(e e-e ) (4.9)

j2

i

b i  =0

where b1 =O is due to the application of the apex Mach wave

condition.

Since the b i s are expressed in terms of a i s, the latter

can be evaluated by applying the tangency condition at the

control points. In matrix form this condition can be expressed

as

[Wji] {a i} = {Bj} (4.10)

where [Wji ]  can be expressed as [V i]-R' (xj)[Ujil and Vji and Uji

are the velocity influence coefficients in r and x directions

respectively of the oscillatory flow at xj , r, due to the panel

i. The right-hand-side of the tangency condition evaluated at

the control point j is denoted by {Bj}, which represents the

given downwash.

In supersonic flow, the governing equation is hyperbolic,

the problem becomes an initial value problem; hence the matrix

[Wj, is a lower tridiagonal one. The solution method for
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solving the system of equations given by Eq. (4.10) is

straightforward.

Once the (ail are determined, we can compute the velocities

and the potential at the control points and therefore the

unsteady pressure coefficient. Once the unsteady pressures have

been determined, the generalized forces, can be determined by

using Eq. (2.43).

4.5 Results and Discussions

To verify the present method, numerical examples are

presented in terms of unsteady pressures, stability derivatives,

and generalized forces. Free-free mode aerodynamic damping for

bodies in bending oscillations are presented for various

configurations, including that of the Saturn SA-1 launch vehicle.

4.5.1 Results According to Various Coordinate Systems

Figures 10, 11 and 12 present the in-phase and out-of-phase

pressure coefficients of a 10% thick cone at Mach number M =2.0

and reduced frequency k=2.0 in the wind-fixed, body-fixed and

pseudo-wind-fixed coordinates. The oscillating cone performs in

pitching mode, first-bending mode and second-bending mode,

respectively. Free-free mode beam theory was used to determine

these modes. For the rigid mode oscillation in Fig. 10 the

pseudo-wind-fixed and the body-fixed systems become identical;

thus only one result is presented.

In general, the results of the body-fixed and the pseudo-

wind-fixed systems and those of the slender body theory (Ref. 6)

are in good agreement. In contrast to these results, the in-
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phase pressures of the wind-fixed results persistently show the

effects of the apex singularity in all cases, as expected.

Consequently, the overall pressure distributions downstream are

contaminated by this singular behavior originated from the apex.

It is noted that when the oscillation center x. is placed at the

apex, or the mode shape g(x) at the apex is zero, the apex

singularity disappears and all wind-fixed results are in close

agreement with the others. Also, it can be observed that the

pressures due to the flexible modes are one order higher than

those of the rigid mode, and that the out-of-phase pressures

resemble the mode shape. The reason for this latter behavior can

be simply analyzed from the slender body limit. There, the out-

of-phase pressure, as shown in Appendix C, is proportional to

(R(x)g(x))' and because R(x) goes to zero at the apex, the

dominant term is R'(x)g(x).

From Figs. 13 through 18, generalized aerodynamic forces on

a cone, a parabolic-ogive and a cone-cylinder oscillating in

first and second bending modes with reduced frequency of k=2.0

are plotted versus freestream Mach number. (Due to the

singularity originated from the apex, the generalized forces

resulted from the wind-fixed coordinate system will not be

presented here.) As expected, the present results approach the

slender body results in the decreasing order of thickness.

While the pseudo-wind-fixed and body-fixed results are in

satisfactory agreement, their deviations increase with increased

Mach number and thickness. In Fig. 18, the sudden departure of

the pseudo-wind-fixed phase angle (argument) could be caused by

35



the mode-shape/expansion-fan interaction which is further

amplified by the second derivative term Oorr" In general, it can

be observed that again higher order modes result in higher value

of generalized forces. For example, the magnitude (modulus) of

the generalized forces for the second bending mode is about twice

that of the first one.

In terms of the effects of Mach number, it can be seen that

when the Mach number approaches the low supersonic regime, i.e.

M.=1.5, all magnitudes increase rapidly. This

trend is similar to that obtained for rigid modes. When

approaching the higher Mach number range, the changing rate of

the force magnitudes appears to be less sensitive to the Mach

number for a given body thickness or given mode shape. Similar

trends, in the high supersonic Mach number range, are found in

the solution to Euler's equations for steady flow.

To simplify the matter, in the following sub-sections, only

results in the body-fixed coordinate system, are presented.

4.5.2 Effects of Frequency

In the low frequency limit, the damping-in-pitch moment

coefficients for a parabolic-ogive, an ogive-cylinder and a cone-

frustrum body are presented in Figs. 19, 20 and 21. Throughout

the supersonic range the present results are found in good

agreement with those of Platzer's (Ref. 8) linearized method of

characteristics (LMOC), Tobak and Wehrend's (Ref. 9) cone theory,

which are limited to the low frequency domain, and various

experimental data (Ref. 8). Across the frequency range, the

magnitude and the phase angle of the generalized forces Q,. for a
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cone and an ogive in pitching motion are presented in Figs. 22a

and 22b. The force magnitude increases with increased frequency,

whereas the phase angle is less frequency dependent. Notice also

that the effects of hody shape become apparent in the high

frequency range. All results merge in the low frequency limit.

Similar trends were found in the sonic-flow studies by Landahl

Ref. 28).

In the high frequency limit, Fig. 23 presents results of the

present method compared against the piston-theory (Ref. 29)

results for a very slender parabolic ogive. The thickness ratio

r=.02 for this case is selected baased on the order analysis

rM k<l and M k>l.0 as required by the piston theory. For M.= 1.5

the agreement seems to be very good for the two selected reduced

frequencies, k=4.0 and 7.5. It is also interesting to compare

the effects of frequency and flow dimensionality on unsteady

pressures. Figure 24 shows comparisons of unsteady pressure

coefficients for a 5.7" cone and a flat plate pitching about

the apex at M =2.0. The flat plate results are computed by the

LPP code (Ref. 30). As expected, the unsteady pressure magnitude

for an oscillating cone is smaller than that of a flat plate at

k=l.0 and k=2.0. Similar to the case of steady supersonic cone

and wedge flow, the present finding shows that the cone in

oscillation yields weaker compression than the flat plate as a

result of the three dimensionality of the flow, irrespective of

the oscillation frequency.
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4.5.3 Nonlinear Rerults

The effects of the nonlinear mean-flow in the unsteady

aerodynamic forces, are presented in Figs. 27 and 28. In these

figures the legend "Present HPP" represents the HPP linear

results to distinguish them from the "Present HPP nonlinear"

results. It should be noted that the latter results are obtained

based on the unsteady hybrid approach developed in Chapter 3.

Figure 27 shows that a good agreement of HPP nonlinear

results with Brong's (Ref. 31) exac: Euler unsteady results is

obtained for the pitch-damping forces for a cone. The linear

results deviate from the nonlinear ones as the Mach number

increases. The nonlinear effect is enhanced by either increasing

the hypersonic parameter M r or by decreasing the Mach number

toward the transonic range.

Figure 28 shows that the present HPP methods are in fair

agreement with the measured damping-in-pitch moment coefficient

for a 20% thick ogive-cylinder throughout the Mach number range.

The computed results of SPINNER code (Ref. 32) and Ericsson's

(Ref. 32) show large discrepancies with the measured data; in

fact, weak dependency on the Mach number range was found in these

results. By contrast, strong Mach number dependency is shown in

tho results of the HPP code, which show a favorable trend with

the measured data. However, no appreciable difference is found

between the HPP linear and nonlinear results for this case.

From these figures, it is seen that the unsteady

aerodynamics can be altered substantially by the mean flow

influence through the tangency condition and the pressure
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coefficient. These improved results prompt further development

of the nonlinear method for aeroelastic applications.

4.5.4 Elastic Bodies

Next, computed results of the HPP method for an elastic

cone-cylinder body are compared with the aerodynamic damping data

measured by Hanson and Dogget (Ref. 14) where the aerodynamic

damping derivative is defined as

C' = 2kA(CA/Ccr) 1 I(Q r) (4.11)hk

and p is the mass ratio. Physically, this coefficient, CS,

represents the ratio of aerodynamic damping to the critical

damping. The reduced frequency of the first bending mode (Fig.

29a) lies in the range between 1.12 to 1.6 corresponding to

MW=3.0 to 1.5. For the second bending mode (Fig. 29b), it lies

between 2.9 and 4.2 for the same Mach number range. It is seen

that the present results establish close trends with the measured

data. By contrast, all quasi-steady theories yield inferior

predictions. Due to an inconsistent formulation, in their

boundary condition, Bond and Packard theory (Ref. 11) results in

considerable discrepancy with the measured data, as can be seen

in Fig. 29b.

Aeroelastic analysis of the Saturn SA-l launch vehicle are

presented in Figs. 30 and 31. Steady mean flow pressure, and the

in-phase and out-of-phase pressures for the vehicle in rigid mode

are computed in Figs. 30a to 30c. The in-phase and out-of-phase

pressures practically follow the same trend as that predicted by
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the slender body theory. Clearly the deviation between the

slender body results and the present HPP results are due to the

inclusion of the Mach number and the thickness effects in the

latter approach.

The mode shape determined by experiments at NASA-Langley

(Ref. 15) is used as input to compute the aerodynamic damping

coefficient. This coefficient is now defined as

C1= -1m(Q.3 )/nkq, where "3" denotes the first bending mode and

q is a parameter involving the body shape and the mode shape

<q=1.763, see Ref. 15). The natural frequency for the actual

vehicle is 2.8 Hertz. However, because of the large reference

length, the reduced frequency k lies between 1.4 and 2.53 for a

Mach number range of 3.0 to 1.2, respectively. Therefore, the

present case of study needs an accurate prediction method in the

high-frequency range. Again, good agreement is found between the

present results and the measured data. To model this complex

configuration, less than 100 panels were used in the prescribed

frequency range. Consequently, only 30 seconds of CPU time in an

IBM 3081 were needed to obtain all the data reported in Figs. 30

and 31.
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CHAPTER 5

FLUTTER COMPUTATION

One of the main applications of unsteady aerodynamics is the

computation of flutter. The phenomenon of flutter is a result of

an interaction of aerodynamic forces and airframe response in

such a way that the structure receives energy from the airstream

rather than giving it up as damping. In this chapter the flutter

boundaries for a 7.5" cone, in pitching and plunging oscillations

are compared with experiments and different theories for

different Mach numbers. The effects of the nonlinear mean flow

are studied.

For the same cone the divergence boundary as a function of

the Mach number is presented.

5.1 Flutter Equations

The equations of motion for a body in plunging and pitching

oscillations as shown in Fig. 30 can be shown to be

mh(t) + S aa(t) + Khh(t) 1p UW [Q1 h(t) + Q12(t)Sref

S h(t) + I a(t) + K a(t) i U2 LQ h(t) + Q 2 2  t)]Srefa a a 2 L I p U 1L

(5.1)

where h(t) and a(t) are 'he generalized coordinates for plunging

* and pitching respectively and are defined positive down for h(t)

and clockwise for a(t).
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For harmonic oscillations h(t) and a(t) can be expressed as

iwt iwt
h(t)=hoe and a(t)=aoe Using the conventional notation for

the flutter equations we let Kh=mw, K =1 w2 , =m/mp LR(L) and

a a

r2 =1 mL 2 , where wh and w are the natural frequencies of the body

in plunging and pitching oscillations respectively, A is the mass

ratio, and r is the dimensionless radius of gyration about the

pitch axis.

Eqs. (5.1) can now be expressed in a matrix form as follows

(. 2 W a)2 1~ XG x 1 QL 1.(
- W w 2juk2  L 2 Lk2  L

[XG-x k 2-- -- _ 2
____ _2Mk r2 (1-_) _ 2Z a#k =(0

L 2 u kz 2 t

(5.2)

In Eqs. (5.2) for a fixed Mach number the unknow,.s are w, p.

and U., which represent the flutter frequency, the altitude at

which flutter will occur, and the flutter speed respectively.

The U-g method (Ref. 33) is used to determine the flutter

boundary. Complex roots are obtained by introducing the

artificial structural damping factor g, and a root of the

equation represents a point on the flutter boundary if the

corresponding value of g equals zero. Thus Eqs. (5.2) are

replaced by
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* 1 - -_ X ( ht)

uk 2 Ak 2  L 2 Mk2

Xr-x a L 1 2 1 I-A2tQ
a 2 k 2

(5.3)

S2where x :(-- (1 + ig).where

If flutter exists, h(t) and a(t) do not vanish identically.

Thus, for a nontrivial solution to exist requires the determinant

of the coefficient matrix of Eq. (5.3) be set to zero.

Mathematically this amounts to solving an eigenvalue problem.

Solving the determinant for X yields roots (XE,x 2,...) from

which a new frequency and damping value for each mode are

obtained as follows

W

w 2

a

g9, Imag ( Xi

The velocities corresponding to w i are obtained from k as

* wLU ! = --,,---
k

Since the generalized forces are functions of k the

eigenvalue problem can be solved for a number of k's to obtain
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(wi ,g ,U )k for each k and plot a root locus (U-g) diagram. The

zero crossing of a g locus denotes a flutter point.

5.2 Flutter Results

For a 7.5* cone at Mach numbers M =2.0 and 3.0, the flutter

boundaries in terms of flutter speeds and flutter frequencies

versus the wind-off frequency ratio are presented in Figs. 31 and

32. Two rigid modes, plunging and pitching, are investigated.

As reported in Ref. 16, the measured data were obtained in order

to evaluate the sufficiency and the applicability of the then

existing unsteady theories for flutter analysis, namely the

quasi-steady (Q.S.) approaches (Refs. 10 and 13) and the

frequency expansion theory (Ref. 7). For this reason, the

reduced frequency range is confined to one below 0.4 so that the

compared quasi-steady theories can be valid. While all methods

yield rather accurate flutter frequencies, it is seen that the

quasi-steady method fails to predict the flutter speed

consistently with the measured data. The present method however

consistently slightly underpredicts the flutter speed, whereas as

expected the slender body theory predicts the most conservative

boundary.

In order to investigate the effects of the nonlinear mean

flow, the flutter boundaries for the same cone are now presented

in Figs. 33 and 34 versus the Mach number for a wind-off

frequency ratio of wh/w =1.8. From the comparison

with the measured data (Ref. 16) it is seen that consistent

improvement in trends are obtained over the linear ones.

However, the predicted boundaries become less conservative in the
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order of slender body, the HPP linear and the HPP nonlinear

results.

The phenomenon of divergence is inherent to the static

aeroelasticity. Divergence occurs when the static moment created

by the aerodynamic forces equals the elastic moment

acL q Sr ef (a

In Ref. 16, the divergence parameter is defined as

2LqffR(L) 2 
_ 2

K ac
aa

In Fig. 35 the divergence boundary for a 7.5" is presented

versus the Mach number. Interestingly, the nonlinear results

behave like the slender body results in this case, whereby the

former show little dependency on Mach number up to M =5.0.
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CHAPTER 6

ASYMMETRIC BODIES

In this chapter, the formulation for an asymmetric body

performing bending oscillations is presented. The differential

equations, boundary conditions, and pressure coefficients in the

body-fixed coordinate system are properly formulated, and the

solution of the first order equation, using a spline panel

method, is obtained. Comparisons of the steady and unsteady

pressures, forces and moments for conical bodies of various cross

sections are made with other methods, whenever available.

6.1 Formulation

As shown in Appendix A, Eq. (A.7), the full potential in the

body-fixed system for asymmetric bodies can be written as

Q(x,y,z,t) = x + hx(x,t)z + 0(x,y,z,t) (6.1)

The linearized equation for the perturbation potential 4

obtained by substituting Eq. (6.1) into Eqs. (2.2) and (2.3) is

given in Appendix A by Eq. (A.13). There it is also shown that

the governing equations for 0o and 0 , in cylindrical

coordinates, are given by

(l-MZ)€oxx + Oorr + 1or + 1 0090 = 0 (6.2)
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1A

(lIM)01.x + rr + 1 -r r

+ -¢ - 2ikM2 .01 x +  M-k2o, = G3 (g,€ 0 ) (6.3)

where G3(g,o) represents the mean flow and flexible mode

interaction (like in Chapter 2 Eq. (2.23) for bodies of

revolution) and is given explicitly as a function of g and #0 in

Appendix A, Eq. (A.17).

6.1.1 Boundary Conditions

The condition at the apex Mach wave for asymmetric bodies is

given by

00 = 0ox 00 0 e = 0 I at x 5 Pr (6.4)

= *l x =#r =#e=0

and the condition of the velocity to be tangent to the body

surface at all the times can be expressed (the same as Eq. (2.25)

for bodies of revolution) as

(7Q-V8 )-n = 0 at S = 0 (6.5)

where V. is the velocity of the body surface and is given by

V6  = i(t)[g'R cos e e. - g(cos e er  - sin e ee)] (6.6)
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S the body surface and n the outward normal to S. In the body-

fixed coordinate system the body surface S is simply given by

S = r - R(x,O) = 0 (6.7)

The normal n is then obtained as

n = S - RXe x  + e - - e (6.8)

The total velocity 70 is given in terms of the perturbation

potential 0 in Appendix A, Eq. (A.8) as

70 = (1 + OX - hxoxZ) ex + Oyey + (hx + 0.) e, (6.9)

*Now, expressing Eq. (6.9) in cylindrical coordinates and

letting

f(x,r,O,t) = #0 (x,r,E) + 6(t) 01 (x,r,e) (6.10)

Eq. (6.9), when evaluated at the body surface, becomes

70 = 0 x o - (t)g' 'Rcose) + 8(t) 1 xIe.

+ [0or + 6(t)Oir + 6(t)g'cosele r  (6.11)

+ [ Wo Ol  + 6 (t)WO
I 0  - 6(t)g'sin ]e 0  at r=R(x,G)

* Now substituting Eqs. (6.11), (6.8) and (6.6) into Eq. (6.5)

and collecting like terms of order one and 6. yields
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Re

0o - RxOox R- ¢0e Rx  at r = R(xe) (6.12)

Re
oil - R)¢O - €e = - RR,(g''¢0 o+ikg') cos e

- (g' + ikg)(cose + e sine)

at r = R(x,e) (6.13)

These are the boundary conditions for the mean flow and the

cross flow for bodies of arbitrary cross section. It can be seen

that when the body under consideration resumes its axisymmetry,

(i.e. R e=0) Eqs. (6.13) and (6.12) reduce to Eqs. (2.30) and

(2.31) respectively.

6.1.2 Pressure Coefficient

The relation between the time derivative in the wind-fixed

system, t', and the body-fixed system, t, is provided by

aO _ aQ aQ 1 .i e 2

t O - g'8(t)r 2- cose + gJ(t)(cos e ar sin eo )

(6.14)

Now if Eqs. (6.10) and (6.1) are substituted into Eq. (6.14)

(recall that h(x,t)=g(x)6oeikt) and retaining only up to linear

terms in 60 yields
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at3(t)O,(x,r,O)) - g'i(t)rO,(x,r,E))cos8

+ (t)g(O'JrcosO - 1 0,esin9) (6.15)

Substituting Eqs. (6.15) and (6.11) into the exact isentropic

pressure coefficient as given by Eq. (2.32) and performing

* binomial expansion according to the small parameter .501 we obtain

CP CO + 5(t) C' (6. 16)

where CO 2 ISI ](6. 17)

and C' 2SO{(l+ 0 ,)(0j1 ,-Rg''#0,)cose) + 00 ,(0 1 ,+g'cose)

+ 001-,-'ie - ikRg'O0 cose + ikol

+ ikg(O,,,cose - -sinE~)} at r=R(x,E)) (6.18)

where So is now defined as

so2 @( 200. + 02,+ 02+ 02

The generalized forces will be given now by
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Q>~ 1Sf f o Cj P >[(g(') g+ '( ) RR.)Rcose +

g(')R sine] dxde (6.19)

Once the generalized forces are determined, the stability

derivatives can be obtained from Eq. (2.44), in the similar

manner as to determine those for axisymmetric bodies.

6.2 Mean Flow Solution and Results

To establish a robust unsteady computational procedure for

asymmetric bodies it is more appropriate to investigate first the

method of solution of the mean flow since there are more

available data for result verification. The mean flow problem is

governed by Eq. (6.2) with the boundary condition Eqs. (6.4) and

(6.12).

If the velocities are to be single-valued function the

dependency on the polar angle e must occur through factors

cos(ne) and sin(ne), where n is an integer. The elementary

solutions in this form that satisfy Eq. (6.2) were obtained by

Ward (Ref. 34) (Chapter 9, Eq. (9.3.22)) as

(n (x,r,e) = - cos(ne) x-Pr 1  1
( sin(ne)0 (dr) n 2{x-+(x-)z- 2 r 2 )n

+ (x -- (X-C)2-g2r2 )nI fn(I) di

V(x-1 ) 2 -p 2 r2

(6.20)
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The potential given by Eq. (6.20) can be considered as a

distribution along the body axis of 'vortex multiplets' of

strength f'(). For the case n=O Eq. (6.20) reduces to Eq. (3.4)

representing a distribution of sources as presented in Chapter 3.

Since Eq. (6.2) is linear a general solution can be obtained by

superposition of elementary solution, thus #0 (x,r,e) can be

expressed

N
(n

0. (x,r,E) = o x,r,e) (6.21)

The functions fn(f) that appear in Eq. (6.21) should be obtained

from the boundary conditions. But, before a numerical procedure

to determine them is developed, it is convenient to estimate the

magnitude of the different terms in the integrand of Eq. (6.20)

to see if convergency difficulties can arise during the numerical

solution. It can be seen that the terms [x-f+V(x-I)Z-§ 2 r21n and

[x-0-V(x-1)2-#2r2] n are of order 1 since x is defined between 0

to 1; however the term l/(fr) n when evaluated at the body surface

is of order I/Tn, where T is the thickness of the body. Thus,

for thin bodies this term can be very large if the total number

of elementary solutions, N, is large. For example for a 10%

thick body if N is 12 those terms are of order 1012. Therefore,

if the velocities have to be of the order of the thickness T

means that the functions f,,(1) must be of order 10- 1 . This

implies that numerical difficulties should be expected if Eq.

(6.21) is used to solve for the mean flow potential 0 . To make

the term i/rN small the body thickness T has to be large, which
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is in contradiction with the assumptions of small disturbances,

or N has to be small. Since N will depend, in general, on the

body cross section, this latter condition can not be guaranteed.

Thus, the application of this method to develop a robust

computational method should be disregarded.

Thus, Eq. (6.2) should be attempted to be solved by a method

tnat guarantees N to be small. Eq. (6.21) can be considered,

with respect to the dependency on e, as if the mean flow

potential 0. is fitted by cos(ne) and sin(ne) functions in the

interval 0! E2f. Drawing the analogy of this method with the

curve-fitting method would be like if in the latter a polynomial

of N"h degree were used to fit a function s(x). However it is

known that if a spline fit is used the curve s(x) can be fitted,

with good accuracy, by piecewise low order polynomials. Thus, if

the concept of the spline fit is used to solve for Eq. (6.2) it

will amount to divide the body into interval along the 9

direction, i.e.

0 E, <<e < 9 <e < < ... < e < ON) 2ff, each

interval defined by AE J-e J  'see Fig. 36). On the interval

A(), the potential 00 ca be expressed, i.e. as

2
E) = ( r , ) :S Se o .) (xj8 , 8 6.22)

n 0

where o , ' and 0, 2 are given respectively by

x - grfO (I) di 6.23)
/(X-C) 2 -#25r2
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< [~x-Ar I  x fi

C J r di2- 2 r2  (6.24)

*2 -x-r 1 (2(x-C) 2 -#2r 2 )f" ( (62
co J (fr)2  di-(6.25,o 7(--2--

r

where only cos(ne) functions have been considered.

On each interval AE) a set of M points is distributed on the

body surface with coordinates (x1 ,r1 ,EO) i=l,...M, where

*Oi=i/2(Oj+6.+,) and r,=R(xi,ej), such that xi<xi,,. Thus, a

total of MxN points on the body surface are located which are

called the control points. From each control point the

intersection of the inverse Mach cone with the body axis is

determined, to obtain 1i+ 1 ,j=xj-ir with 1,,, being the body

apex. The interval fi,i to Ci~l,i is called a panel. On each

panel the strengths of the sources (foJ), dipoles (f,,j) and

quadrupoles (f2,j) is assumed to vary linearly, i.e.

fo j (l) = a ,, if + b ,,j

(6.26)

f 2 ,1 ( ) = e ,, 0 I + I , I

If the condition that the functions fo, , fl, , and f2,j must be

continuous between each two panels is imposed, the constants b

can be expressed as a function of a, j, bl, , and di j  of c',il

d , and of e , 2, .; The constants b, , d, and 1,,

can be shown to be zero when the boundary condition at the Mach
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wave emanating from the apex is satisfied. Thus the potential at

the control point xn, rn, Ej can be shown to be after integration

n
o x , r , ) = £ - a1  (Xn - )cos 1 ( 8r )

- a (xcsh-: o + e1

l( (xn-)+J(x -+ 2 -l 2 r2 )

'(xn-frn2 rnn

rn
8 (n 2 -p2r )3)

+ r

(x. - ) + J( X -1 ) 2 -, 2 r2

(x + - ) + ( o- ) 2 - A2 r2 1

- r ) c o s ( 2 e , ) } '.

(6.27)

The velocities in the x,re directions can be obtained by

applying the derivatives with respect to x,r, and e respectively.

Thus, the mean flow potential and velocities can be expressed as

function of 3MxN unknown constants a,,, ,, and e,, i=l....M,

j=l ... .N. If the conditions that the potential as well as the

tangential velocity in the 8 direction must remain continuous
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between adjacent intervals i.e. to AeJ are imposed, a set

of 2MxN equations relating a,, j ,c and el, j are obtained.

These equations can be used to express, i.e. the c,, s and the

e,,, s as functions of the ai, 's. Now, by satisfying the

tangency condition at the control points the a,1 ,'s can be

determined. Once the ai ,'s are known, the velocities at the

control points can be evaluated and from Eq. (6.17) the pressure

coefficient.

It should be noted that the number of elementary solutions

chosen, three in the above description, can be altered. For

example, if instead of imposing the continuity in the tangential

velocity in the e direction, only the potential is required to be

continuous between adjacent intervals, only two elementary

solutions, i.e. sources and dipoles need to be considered on each

interval. Also any other set of vortex multiplets, instead of

sources, doublets and quadrupoles, can be used and the type of

vortex multiplets used can change from one interval, 6ej, to the

next AEj . This method can be called spline panel method.

The simplest application of the method of solution described

above is if only one elementary solution on each interval is

considered. In that case, the potential and its derivatives in

the e direction are not continuous between adjacent intervals.

The best choice of elementary solutions is the source

distribution, since it is known to be the exact solution of the

mean flow potential for bodies of revolution. Thus, the use of

source singularities of different strength on each interval AO
0J

amounts to treating locally the body as a body of revolution with
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radius R(x,eO). Therefore, some restrictions regarding the

arbitrariness of the body cross section at which this first

approximation can be applied, should be expected.

In the Fig. 37 the mean flow pressure for a conical body at

Mach number M =2.0 whose cross section varies as cose is

compared, at x=l, with Devan's results (Ref. 35), and USSAERO

results. It can be seen that except in the region 0" e 30", the

agreement seems to be very good with both methods. The deviation

in that region we believe is due to the use of only one

elementary solution on each interval. However it is seen that

this small deviation does not affect in the prediction of the

axial and normal forces when compared to the other two methods.

The small difference between Devan's results and USSAERO results

can be due to the different method used to solve the differential

equation. The first used the finite difference method while the

second used the panel surface method. The computer time taken by

these two methods is at least one order of magnitude larger than

the present method.

In thL Fig. 38 the mean flow pressure for a conical body of

circular cross section for -v/2Se9w/2 and elliptical, with

ellipticity ratio 1/2, for m/25e53/2m at Mach number M=2.0 is

compared with Devan's (Ref. 35) and USSAERO results. It can be

seen that a slight deviation occurs overall the values of e when

compared to the other two methods and the normal force

coefficient has a difference of about 6%. However the axial

force coefficient is very well predicted. The reason for the

discrepancy is that an ellipticity ratio of 1/2 is, too low for
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the present method to produce accurate results. As will be shown

later for ellipticity ratio of 0.75 to 1.3, the present method

gives good agreement when compared to USSAERO results.

6.3 Unsteady Flow Solution and Results

The unsteady flow problem is governed by Eq. (6.3) with the

boundary conditions Eqs. (6.4) and (6.13). Like for bodies of

revolution, Chapter 4, only the homogeneous unsteady wave

equation will be solved. The term G3 (g,o0 ) can be taken into

account in a similar manner to that described for bodies of

revolution Eq. (4.1).

To extend the method described in the previous section to

unsteady flow it is necessary first to obtain a general

elementary solution, equivalent to Eq. (6.20) for the mean flow,

for the unsteady flow. This solution can be assumed in the form

(n cos(ne) x-pr -ig(x-C) cos(('f(x-1) 2 - 2 r 2 )'sin(ne) 0 Fn ( 1)e/ x 1 2 ,2r

m(cosh - 1  X-C-); n) di (6.28)
Pir

where e - iy(X - 1) cos(j(V(x-i) 2-_ 2 r2 ) represents the kernel
V(x-1)2-§

2 r
2

for a distribution of unsteady sources along the body axis, and

it is known to satisfy the equation (see Garrick (Ref. 26))
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(I-M 2 ) ¢1xx + 1 rr + oil

n 2 - 2ikM2  01. + k2 M2  € 0 when n=O. (6.29)

Thus, in Eq. (6.28) m represents a function of x,r,c and n

to modify the source kernel so it satisfies Eq. (6.29) for n

different of zero. Then, m must satisfy m(x,E,r; 0)=1. To

determine m we first make the following transformation in Eq.

(6.28)

Sx -x Pr cosh a di = - pr sinn a d a

at 1 = 0 = cosh-1 fr

and at I = x-fir = 0

Eq. (6.28) then becomes

€I ( r ) =ne) cosh- ( i)

(xre) = sin(ne) fir F,(x-,frcosha)eijfircosha

0

cos((firsinha) m(o;n) da (6.30)

To determine m(o;n) the derivatives with respect to x and r

in Eq. (6.30) are determined and substituted into Eq. (6.29). In

this way it can be shown that Eq. (6.30) satisfies Eq. (6.29) if

m''-n 2 m=O. Therefore, the solution to this equation together

with the condition m(a;O)=l, implies that m should be
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m(a;n)=cosh(na). Thus, the generalized elementary solution of

Eq. (6.29) is given by

ncos(ne) cosh- 1

S(xsre) = in(ne)

cos( frsinha) cosh(na) dcr (6.31)

Now, the extension of the spline panel method to unsteady

flow can be done by letting

2

0lj (x,r,e) = 0j,j(x,r,e) , :5 e S ej (6.32)

n =0

where 01,j means the unsteady flow potential at the interval j.

00 (x,r,e) represents a distribution of unsteady sources along

the body axis, 0(1 of unsteady doublets (it can be shown that

0<1 is equal to that given by the first term in Eq. (4.1) for

bodies of revolution by integrating by parts), and 0(2 of

unsteady quadrupoles. The Harmonic Gradient concept needs now to

be applied to the strengths Foj(f), F 1 ,j((), and F2 ,j(C) in a

similar manner as was done in Chapter 4, Eq. (4.6) for F,(I).

The integration of 0(o, and 0(
2 will not be carried out

here; however it is similar to that shown in Appendix B for

bodies of revolution (which is the same as for 0(l). Once the

integration is done the method of solution to determine 01, and

the velocities 01x, Oir and 1/role, at the control points is the
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same as the one described in the previous section for the mean

flow.

Since for the mean flow numerical results were determined

using only one elementary solution on each interval aej,

consistently the same will be done for the unsteady flow. Thus, 0

on each interval a distribution of unsteady doublets of strength

F1 , (1) is distributed. Like for bodies of revolution the

doublet strength is discretized along the body axis and the

Harmonic Gradient concept is applied.

For the unsteady flow a set of conical bodies of elliptic

cross section and ellipticity ratio a/b from 0.75 to 1.3 have

been investigated, at Mach number M.=3.0, and compared, whenever

possible with USSAERO results.

In the Figs. 39 and 40 the static normal force and moment

coefficients are presented versus a/b and compared to those

obtained from the USSAERO code. It can be seen that good

agreement is obtained for both coefficients within the range

studied.

In the Fig. 41 the dynamic normal force and moment

coefficients are presented versus a/b. No comparison with other

theories is made since, apparently, this is the first method able

to compute the unsteady aerodynamics, for bodies of arbitrary

cross section, in supersonic flow. At the present time no

experimental data for the unsteady coefficients could be found.

However since the static coefficients, within the range studied,

are in good agreement with the USSAERO results, it is expected
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that the unsteady coefficients should also be well predicted by

the present method.

In the Figs. 42, 43 and 44 the real and imaginary part of

the pressure coefficient for the elliptic cones in rigid, first

bending, and second bending mode respectively are presented at

9=0, and reduced frequency kzl.O, along the x axis. In general

we can see that the imaginary part of the pressure coefficient

slightly changes with the ellipticity ratio, and that when a/b

approaches one, the present results approach, as expected, those

obtained for the body of revolution.

In the Figs. 45, 46 and 47, the real and imaginary part of

the pressure coefficient, for rigid, first bending and second

bending mode respectively are presented versus e at x=l. The

real part of the pressure coefficient for the case a/b=0.75

deserves some attention. To investigate this behavior the

pressure coefficient for an elliptic cone (a/b=.75) and a

circular cone at steady angle of attack are compared to the

pressure coefficient for a flat plate, obtained from the slender

wing theory (Ref. 5) along the y axis in Fig. 48. Although for

the present time lower values of a/b have not been obtained, it

can be seen that the trend in pressure of the present method is

the same as that obtained from the slender wing theory except in

the region where y/b approaches one, where, for a flat plate, the

pressure becomes singular.

It is interesting to notice that when a/b decreases the body

becomes, as expected, more stable statically and dynamically.

However, from the structural point of view we would say that the
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body becomes more flexible and it might turn out to be more

likely to flutter. Since the present approach has no limitations

regarding frequency or mode shape it can be an excellent tool to

estimate the advantages, from the stability point of view, and

the disadvantages, from the aeroelastic point of view, of letting

the ellipticity ratio to decrease and, thus, to obtain an

optimized cross section body shape.
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CHAPTER 7

BUNDLED TRIPLET METHOD

7.1 New Development of BTM

As mentioned in Chapter 6 using Fourier representation of an

arbitrary body shape would introduce a formulation involving

higher-order kernel function, which makes the determinant

evaluation very difficult. On the other hand, the Splined-Panel

Method used in the same chapter has shown limitations on the

degree of asymmetry for bodies, which indicates that this method

may not be general enough to handle arbitrary body-wing

combinations. The proper treatment of the body-wing interference

mandates to generalize the Spline-Panel method to the Bundle

Triplet Method (BTM) in which at least two substantial features

have been added. First, to keep the kernel function in low

order, multiple lines of low order singularities, namely line

sources and line doublets, are employed. Second, by using a

least square procedure, the BTM can account for the

circumferencial influence between panel elements, thus the method

is sufficient to treat bodies of arbitrary cross-sections. As

can be seen in the later computed cases, the results obtained by

the BTM are all in good agreement with existing theories and

measured data.

7.2 Formulation

As shown in Figs. 49 and 50 the body cross section is

* divided into 'M' intervals. Each interval contains a finite

sector A8m, where A8. = 8m+1 - 8., m M, . . . M, and 81 = 0,
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8M+0 = 2ff. A three-dimensional "pie" shape is defined by a

portion of the body within the sector a8m whose vertex lies along

the body axis. A line distribution of sources and another of

doublets are superposed along the body axis for each pie segment.

Within each pie segment an integral solution can be expressed as

based on the superposition principle,

l(x,,r , M-f r F.(C)B(x, - t, fr,)df

0

x i -fr i

+ f m( )r,(xi - fr,)df-cos8 7.1)

0

x i -Pr i

w f Hm()rr(x i rt cnr)d-sin n

0

where (x,, ri, 8.) represents a typical control point lying on

the body surface r i = R(x ,'m) and 8m = (8m + OM+ )/2. The

kernel function B(x i - 1, 8ri ) can be expressed as

B(x, - , fr i ) = e i (x,-C). c jX
Ro

where Ro  [(x - )2 - p2 ri2 ]1/ 2  (7.2)

p kM 2 ,/ 2 , 1 = kM/g 2

F,(C) denotes the source strength distribution and Gm(f) and

HM I) the doublet strengths distributions in the m t n interval.
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The fact that the doublet distribution has two unknown

functions can be interpreted as that the doublet strength as well

as the direction of the doublet axis are required to be

determined. It is clear now, our triplet model is a "generalized

triplet" in that the singularity strength functions are different

from each other. In the case of FM = Gm = H., the generalized

triplet model then reduces to the regular triplet model (see Ref.

36).

Furthermore, along the body axis, each of the triplet lines

is discretized by N segments where At,. = cj+l,m - ?j,m for a

given pie sector AOm (See Figs. 49 and 50). Also along the body

axis, different source and doublet strength functions are

discretized as FmJ(I) ,  GmJ(?) and HmJ(?) within At,,m" The

velocity potential within this sector can then be expressed as

i I + I

O1 (x,,rjSm) = f f FJ,m(f) B(xi - 9, Ar,)dg
jl

t1+C (

+ Gjm()- B(x i - , Ar,)dtocos-m (7.3)ar,
I J3

0+

+ I f H,3  ) 5- B(x - C, §r,)dE.sinG8

j l

7.3 Harmonic Gradient Model

To achieve computation accuracy and effectiveness in the

high-reduced frequency and/or the low Mach number domains, it is

essential to render the doublet solution uniformly valid in the
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complete k and M domains. This can be simply achieved by

modeling the doublet solution to maintain spatially harmonic i.n

the mean flow direction. In so doing, the panel size A, is

regulated and is made compatible to the wave number generated by

the body oscillation. This is known as the Harmonic Gradient

(H-G) model introduced in Ref. 4.

Here, the H-G model employed for wings (Ref. 4) is adopted

to combine with the Bundle Triplet solutions. Application of the

H-G model to Eq. (7.3) amounts to stating that in the interval

M < < 9J

-ip(
F,,J(I) a ,m(l - e )/it (7.4a)

for the source solution, and

bG( f) (b I + d ,m )e i(x 17.4b)

aH_ 5I \C m + h )e (7.4c)

for the doublet solutions.

Note that Eqs. (7.4b) and (7.4c) are the direct application

of the H-G model whereas Eq. (7.4a) is a new extension of the H-G

model to the source solution. It can be shown that both

:-onstants d, ., and hi.m can be expressed in terms of b. M  and

c, respectively when a continuity condition in Gm and Hm is

imposed between the adjacent segments. Introducing Eqs.

'7.4a,b,c: to, and further discretization of the kernel integrals

of Eq. '7.3; result in
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i

a, , S a S + (b3 , cosem + Cjmsinem)D, ) (7.5)

p 1

where $, and Dj represent the induced potentials per unit

source and doublet strengths respectively by the jth segment of

the triplet line at the point (xi ,r. ,8,); they are given by

+ i F e i _ e i cos R df (7.6)Sj Iv [i Ro

9J

and

+I
Di = S(x i  - 1, ri)dg (7.7)

J r

where

x,-

S(x-, r i ) f cos(Xv-r 2-fIr2 ) d

firi I 2 _f 2 r, 2

Evaluations of Dij+ i as well as its derivatives, with

respect to x, and r,, are identical to those shown for bodies of

j+I
revolution in Appendix B. For detailed evaluations of Sj and

its derivatives, with respect to x, and r, , one is referred to

Appendix D. There it is shown that after a transformation these

integrals can easily be evaluated numerically by Gaussian

quadrature.

The domain of influence is defined by a pie segment bounded

by the sector A$, and the inversed Mach cone intersection with
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respect to P,. Hence the effective triplet line is confined to

the part from the body apex to the it h segment where the

j +J + 1
discretized kernel integrals Si and D. represent the

induced potential per unit source and doublet strengths by the

jth segment of the triplet line. Moreover, it should be noted

that the steady mean flow potential 0, at the point (x , r, ,a.)

)+1 j

can be obtained from Eq. (7.5) by letting k=O in S, and Di

7.4 Least Square Procedure

For convenience, a surface panel is defined as a body

surface element whose area is bounded by R • A 8m and at( . A

control point is located at (xi ,R1 (xi,8m),Sm), the central point

of each panel, where i=1,...N, m=l,...M, and 8m=(8, + 8mi)/2.

To obtain the potential values of 0,, at the control point, one

of the effective ways is to relate the unknowns aj,m, b3 ,m and

cj ,.to the cross flow potential 0j,. by means of the method of

weighted least squares. (For simplicity, we have dropped the

subscript "l" in 0i ,m, hereafter.)

To apply the least square method one considers the induced

potential by the singularities distributions at the mth pie

segment a~m at the points (x ,r,8m1)* and (x1iri 1 ), i.e.

I i+1 J+l- Za3 ~S~ + ( bjmcosem8~ sieiD01 (X, , r, I'am- Z a, , mSi b m c s m- 1+cJ , mSin~m- I oD

j=1

and (7.7)

(x,,rj,m+m) = 3= E a1S j  + (bj mcos8m l+c j,msinem. )D,

It should be noted that for this point r, =R(x, ,8m_ ) and for the
next r, = R(x, ,m+ ).
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Let 0,h be the exact value of the potential at the body

surface, the source- and doublet-strength solutions, due to the

lease square approach, arL the ones that minimize the residual

1m+1 I 3+1+C sn +

Z a,,SJ +(bjMcoseh+cJ sinah)D3 J} (7.8)
-h=m-I J=J

j ' I J +l

where S, and D are now evaluated at the control point

(xiIR(xl,6h)6h); Oi,h represents the exact value of the

potential at the ith point and Wh are the introduced weight

functions. Note that Eq. (7.8) is a least square procedure set

up for three adjacent panels, namely from (m-1) to (m+l). Thus,

imposing

-ai = ai- 0 (7.9)aai , M a)h i , n (3c i , M

yield,

M+1 1j + I j+1 - I+
m hl iO h~ )Si 0~

Z W {Z aj,mSj +(bjimcosah+cjm sinah)Dj -i,h}Si
h=m-1 J =1

M + 1 J+ 1 - +1 i+1
Z Wh {Z a 3 ,S J  +(b ,COShs+Cj Msin6h )Dj -i,h }Di coseh =0

h=u,-1 3=1

m+ I i j+ j+l - i+ -

Z Wh {Z a. , Si +(bmCOS8h+cj msin8h )DJ -i ,h }Di sin8h =0•h=m-i 3=1

(7. 10)

• These equations can be expressed in matrix form as

aj a, , M 0 ,M- I

[A] , bj 4+ _[Y]J,iJb ,m [H], ( (7.11)
cJm c01m

The matrices [A] i, [Y],i and [H], are given in Appendix E.
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We can now relate the unknowns aim, b,, and ciM to

0# i, -, 01,m and 0 ,m j by a least square matrix [LS], i.e.:

,a,[LS] ,} (7. 12)

C

for i = l...N and m=l .... M. On the LHS of Eq. (7.12), the column

vector has the dimension of (3xNxM), while on the RMS, [LS] is u

matrix of dimension (3xNxM)x(NxM), and the unknown potential 0,,m

is a column vector of dimension (NxM).

Hence, the velocities at the control point can be expressed

as:

(0- } = [U][LS](0,m} (7.13)

(2-- = [ V] LS](#,0 (7. 14)
ar1

1r.. afO } = W] LS]{¢i,m} (7. 15)

where [U], [V] and [W] are matrices of dimension (NxM)x(3xNxM)

containing the velocity influence coefficients in the x, r and 9

direction. Now, the velocities 2- 2 and 1 a3 in the
axi' 3r, ri a8m

tnagency condition, Eq. (6.13), can be replaced by the cross flow

potential. 0,m through Eqs. (7.13-15). Consequently, {#m} is

the unknown to be solved in Eq. (6.13)

In passing, we note that the evaluation of the steady mean

flow potential follows the same procedure as described above,
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J + j n J + l r o bexcept that the kernel integrals s, and are to be

replaced by their steady counterparts.

7.5 Panel Flutter

To verify the solutions obtained in the high reduced-

frequency range, one is required to apply the present BTM to the

supersonic panel flutter problem for cylindrical shells.

Previously, Dowell, and Widnall (Ref. 37) used Laplace transfer

technique to study this problem, whereas Platzer et al. (Ref. 38)

used the Linearized Method of Characteristics (LMOC). The

objective of these studies is to evaluate the generalized forces

acting on the vibrating cylindrical panel of an otherwise rigid,

infinitely long, cylindrical shell.

Let L be the length of the cylindrical panel i.e.

(0 < x < L). Along the cylindrical shell, the oncoming flow

upstream of the panel is uniformly supersonic. The cylindrical

panel is allowed to perform small-amplitude harmonic oscillations

(see Fig. 55).

For inviscid analysis of panel flutter, Eq. (6.3) (G3 = 0)

is the commonly used governing equation. rn the mean surface of

the cylindrical panel, r=R, the tangency condition reads:

ir = -kh + hx  , 0 < x < L (7.16)

0 x<0

where h is the mode shape of the vibrating panel, defined as

h(x,g) = sin(jyrx)cos(n8) (7.17)
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The unsteady pressure coefficient CP on the panel surface is

simply

1

CP = -2[01, + ikol] (7. 18)

and the generalized aerodynamic forces Q,, reads

2ff L

Qj fC Cp sin(jfx)cos(n8)R d8 dx (7.19)

0 0

1(i)
where CP is the unsteady aerodynamic pressure due to the mode

sin(inx)cos(nS) and C = 2m for n = 0 and f for n g 0.

Bundled triplets are placed along the x-axis in the interval

-PR < I < L-flR. The panel elements and control points between

0 < x < L and 0 < 8 < 21r on the mean surface are distributed

according to the cosine law in both x and 9 directions.

Combining Eqs. (7.14), (7.16) and (7.17) results in the following

tangency condition evaluated at the control points.

IV][LS](Oj,} = {(ik sin(j'xi )+j cos(jfxi ))cos(n8m)} (7.20)

The potential values #0, can now be obtained from the above

equation. Thus, the unsteady pressure and the generalized forces

can be evaluated according to Eqs. (7.18) and (7.19).

In the present formulation, the circumferential mode shape

(i.e., the cos(nS) factor) is retained throughout the analysis,

whereas Refs. 37 and 38, cos(no) is factorized out in their

formulation. As a result, the number of control points required

in the circumferential direction increases rapidly with an

increase in n, although the computation time is still
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comparatively rapid. It is essential to point out that the

present method is a full three dimensional one which can treat a

much wider scope of problems than those in Refs. 37 and 38.

Feasible applications in panel flutter using the present method

include closed (pointed) bodies of circular or noncircular cross

sections and vibrating panels of non-harmonic mode shapes (i.e.,

the case of partially oscillating shells).

7.6 Results and Discussion

To validate the present method, numerical examples in terms

of steady pressures, stability derivatives, and generalized

forces are presented for asymmetric bodies and for cylindrical

panels.

7.6.1 Asymmetric Bodies

The steady pressure distributions for three different

asymmetric conical bodies are presented in Figs. 51, 52 and 53 at

the same freestream Mach number M = 2.0. Since the flowfields

are conical, only the circumferential Cps are presented for these

cases. Asymmetric configurations as shown in Figs. 51 and 52 are

placed at mean angle of attack a = 0, whereas the elliptic cone

in Figure 4 is at a = 50. Since the flow is symmetrical with

respect to the meridian plane, pressures on half of the body are

presented (0 < 8 < 1800). Because of the steeper variation in

the given body curvature (due to cos 38), a bundle of 36 triplet

lines is distributed in equal circumferential intervals for a

full body in Fig. 51. The geometries in Figs. 52 and 53 are less

complicated; only 18 triplet lines were used for full bodies in
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both cases. It can be seen that the present computed results are

in good agreement with Devan's results using the finite

difference method (Ref. 35) and the USSAERO results (Ref. 2).

Typically, we use 40 panels in the circumferential direction in

the USSAERO program for obtaining results in Figs. 51, 52 and 53.

In the present method, 5 segments are used in the x

direction. This amounts to a total of 100-200 panels and control

points to be evaluated. Because the evaluation scheme of the

present kernel is much simpler, the CPU time required is about

one tenth of that needed in the USSAERO code.

Fig. 54 presents the static (Figs. 54a, 54b) and dynamic

(Figs. 54c, 54d) normal force and moment coefficients at various

Mach numbers for a family of elliptic cones placed at zero mean

angle of attack. The ellipticity ratio as defined by a/b, ranges

from .75 to 1.3. Figs. 54a and 54b compare the present results

with those computed by USSAERO. There appears to be an increase

in discrepancies as the elliptic cone becomes more wing-like,

i.e., a/b > 1. When the ratio approaches one, all results

converge to the results for a circular cone as obtained in

Chapter 4.

Similarly, the computed results for the out-of-phase normal

forces and moment coefficients (Figs. 54c and 54d) also converge

to those obtained in Chapter 4 when a/b approaches one as

expected. In passing, we note that little Mach dependency is

observed for the static moments (about x. = 0), whereas the

damping moment decreases rapidly with increasing Mach number.

Furthermore, all results confirm the expected trend that both the
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static and the damping moments increase with decreasing

ellipticity ratio, i.e., as the body becomes more wing-like.

7.6.2 Cylindrical Panel Flutter

In order to validate the present method in the high-

frequency domain, supersonic cylindrical flutter cases (Fig. 55)

are selected for comparison with existing theories (Refs 37 and

38).

A bundle of triplet lines are arranged according to a cosine

distribution both in the circumferential and in the axial

directions (0 < 8 < 2m and 0 < x < 1). The cylindrical panel is

first evenly divided into n intervals in the circumferential

direction, say n=5. Within each interval, eight control points

are used, given a total of 40 control points. In the axial

direction, 25 points are used for all n's.

The real and the imaginary parts of the generalized forces

on the cylindrical panel are presented in Figs. 56 and 57 for the

freestream Mach number M = 12 and the reduced frequencies k=O

and 1.0. The generalized forces are computed based on Eq.

(7.19).

It is seen that good agreements are found between the

present results and those of Dowell and Widnall (Ref. 37) and of

Platzer et al. (Ref. 38) up to n=5 for both reduced frequencies

(k:O and 1.0).

7.6.3 Salient Features of BTM

It has been shown that the present method has the following

features:
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a. With the H-G model, the BTM is computationally efficient and

robust for unsteady flow computations in the full frequency

range.

b. Although the total number of panels needed for BTM is

comparable to that of a surface panel method, the CPU time

is only one tenth of the latter.

c. The BTM places the control points on the exact body surface

whereas a surface panel method usually places the control

points on the approximate surface.

7
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CHAPTER 8

Body-Wing Combinations

8.1 Unsteady Lifting Surface Method

Previously, an effective panel method has been fully

developed for oscillating lifting surfaces in supersonic flow HGM

(Ref. 4). This analysis has been further extended from the

velocity potential treatment to that of an acceleration potential

one so that the regions of wake can be completely avoided in the

calculation. For this reason, the acceleration potential version

* of the HGM (called AHGM) is most advantageous in coping with the

unsteady problems for wing-body combinations, in that only the

panels lying on the wing-body surfaces are needed to be accounted

for.

According to AHGM, the normal velocity and the unknown

linearized pressure can be related by the familiar expression,

• i.e.

on =xyz) j Ac K ds (8.1)

A

where

K -ia(x-c) a P cos(xR) e-iA(x-v)dvK-:e _- e i

R

R2  (x - V)2 - # 2 [(y - 7)2 + (z - C)2]

6cp cP - c U
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and S is the effective wing area enclosed by the intersections

due to the inversed Mach code originated from the control point

(x,y,z).

8.2 Body-Wing Formulation

The interference between the body and the wing is

essentially provided by the flow tangency condition. In the case

of the lifting surfaces, the pressure-normal velocity relation is

the result of the tangency condition, i.e.

f aLpKds vN (8.2)

w

in which v, N the normal velocity, or the downwash on the

lifting surface. In terms of the body influence and the given

wing mode, vN represents a difference between these two

vN =B - (vN)B (8.3)

where (v,), is the normal velocity induced by the presence of the

body; as related to Eq. (7.1), (v,) B Tn

represents the wing mode. Thus, Eq. (8.2) becomes

+B w  on the wing (8.4)

w

Note that in the RHS of Eq. (8.4), kernel K and (@n 'w are
(3n

evaluated on the lifting surfaces. Similarly, the relationship

on the body can be derived, i.e.
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40 ) 3 (+ Ac Kds) = B s  , on the body (8.5

w

This time, the kernel K and are evaluated on the body

surfaces.

With Eqs. (8.4) and (8.5), the body-wing tangency condition

can be expressed in a matrix form,

K K) -E B1n,

where the kernel function (E) is related to the least square
a n

matrix by the following equation

aEn] = ([u](nx' + [v] nr) + [w]{n }}.[LS] (8.7)

nr and n8 are the directional consines of the body panels;

B. and B, are the given body and wing modes respectively. Eq.

(8.6) is solved to yield the Acp value on the wing. The

velocities on the body can be evaluated at the control points

from Eqs. (7.13, 7.14 and 7.15). Consequently, the pressure on

the body can be determined from Eq. (6.18).

8.3 Pressure Coefficients

* 8.3.1 Unsteady Pressure Coefficient for the Body

Eq. (6.18) provides the explicit unsteady pressure formula

in the cylindrical coordinate for an oscillating elastic body.

• For body-wing configurations, it is convenient to rewrite this

expression in the Cartisien coordinate on the body surface.

80

0 nm m unnmu m mu nm •n m N nnmm



CP: -2 S 1{(l+0o )(0 1 x-2z~g ' '0),(8.8)

+ oy~1y +oz 1Z

+ g' 0"

+ ik( 0 + 9ozg- z9g 'oX)}

where z. is the control point location of the body panel and g is

the given body mode.

8.3.2 Unsteady Pressure Coefficient for the Wing

Eq. (8.8) can be applied to account for the pressure on the

lifting surface due to the body-wing interference, i.e.

1

CP= -2So (8.9)

The steady velocities fox, 00y, 0.Z and the S0 term are to be

evaluated according to the effective body panels within the

inversed Mach cone. Eq. (8.9) can be further simplified as

1

Acp = -2So.{0i, + ikol} (8.10)

since the second order terms in the bracket can be ignored.

Further simplification of Eq. (8.10) results in the linearized

pressure formula

I
Ic = -2 {#Ix + ik# 1 } (8.11)

which is essentially the pressure formula of the thin wing.

In passing, we note that to include the factor S. might

upgrade the accuracy in the higher Mach number range as it was

previously noted by Van Dyke (Ref. 10).
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8.4 Generalized Forces and Stability Derivatives

The generalized forces Q,3 can be expressed in terms of the

uns:eady pressure coefficient cp and of the mode shape g as,

Q f f ')(n x g/(z - g('n z)ds

S

where S is the wing plus the body surface area; n. and n. are the

normal components in the x and z direction to the wing and body

surfaces, respectively; z is the coordinate of the control point;

I(J)
CP is the unsteady pressure coefficient due to the J-th mode;

g(I) is the I-th mode of oscillation; and Sref represents the

maximum area or the based area for the body-alone cases, whereas

it represents the wing planform area for the wing-body

combination cases.

The stability derivatives are related to the generalized

forces by the following formulae:

CL a Re (Qi 2 )

a 1

Cm L

Im(Qi2)
CN+ CNq k

Cm +- Cmq = kL

where L is the body length for body alone cases, and the wing

mean chord for body-wing combination cases; k in this instance is

the reduced frequency based on L. Q12 and Q2 2 are the 12 and 22

components of the generalize:' f rce iaatrix representing two
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rigid-body modes. The former is the plunging mode and the latter

the pitching mode.

8.5 Results and Discussion

To verify the present results for wing-body combinations in

the low-frequency limit, measured stability derivatives in Refs.

44 and 45 are selected for comparison. Two configurations are

selected as shown in Fig. 58:

Case A: Aspect Ratio AR 3.C, Triangular Wing-Body

Case B: Aspect Ratio AR - 3.0, Swept Wing-Body

To compute the stability derivatives for these

configurations, a bundle of 20 triplet lines is used for the

body. With 10 segments along the body axis, this amounts to 200

control points on the body surface. However, only 50 panels are

required for modeling the wings.

Figs. 59 and 60 show the computed static and damping moments

for the wing-body configurations in Cases A and B respectively.

Good agreements are found between the present results and the

measured data in the overall Mach number ranges at two pitching-

axis locations, x. = .25c and .35c (c is the chord length). For

damping moment calculations, one notices that the predicted

results of the analytical theory (Ref. 46) deviate further from

the measured data than the present results. This is due to the

fact that an analytical solution of a rectangular wing is used to

approximate that of a delta and a swept wing planforms.
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CHAPTER 9

CONCLUSION

Several unsteady supersonic methods have been developed for

computation of unsteady aerodynamics for elastic bodips of

revolution, asymmetric bodies and body-wing configurations.

These methods include the Harmonic Potential Panel (HPP) method,

the Bundle Triplet Method (BTM) and the combined method of BTM

and Harmonic Gradient Method (HGM) for body-wing combinations.

All methods are based on the Harmonic-Gradient (H-G) model in

order to obtain accurate solutions in the full frequency domain

and the lower Mach number range. Specific conclusions of the

present development can be summarized as follows:

1. For bodies of revolution in oscillation the proper

choice of the coordinate system has been subject to some

controversy in the past. The formulation in the wind-fixed,

body-fixed, and the pseudo-wind-fixed systems are presented. The

solutions of the linearized equation in the wind-fixed system,

and of the first-order equation in the body-fixed and the pseudo-

wind-fixed systems are compared for a cone in rigid and bending

oscillations. It is shown that when the wind-fixed system is

used in a straight forward manner a singularity appears at the

* body apex and contaminates the solution downstream.

2. Further investigation of this problem shows that such

apex singularities also appear in the body-fixed system if the

* linearized equation instead of the first order is qolved. Also

it is shown that the origin is due to the use of cylindrical
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coordinates. When the problem is correctly formulated in a

conical coordinate system the pressure coefficient is shown to

remain regular at the body apex (see Appendix C).

3. The computational procedure for the mean flow has been

developed for both the linear and nonlinear potential equations.

Unlike the unsteady computation procedure for wing planforms, the

steady mean flow solution enters into the boundary conditions and

pressure coefficient for the unsteady flow. Hence, it is

important to investigate the influence of the steady mean flow

upon the unsteady pressures as well as the flutter boundaries.

We believe that it is the first time that nonlinear effects have

been included in an unsteady panel method. Computed steady

pressures and stability derivatives using the present nonlinear

method are found to agree well with the known results. Unsteady

nonlinear results show that the influence of the mean flow

nonlinearity is important. For a slender body, nonlinear effects

become more apparent in the high Mach number range. Our unsteady

nonlinear results are in better correlation with measured data

and unsteady exact theories than all other results using

different methods.

4. For a cone in plunging and pitching oscillations the

flutter boundaries, as determined by the linear and nonlinear

methods, are compared to those obtained by experiment and other

theories in Figs. 33 and 34. With reference to the measured

data, all of the computed flutter boundaries are conservative

predictions. The computed boundaries become more conservative in

the order of present nonlinear method, present linear method and
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slender body theory. By contrast, all results.as predicted by

previous theories failed to provide a conservative flutter

boundary.

5. The aerodynamic damping coefficient of a cone-cylinder

in the first two free-free bending modes of oscillation and of

the Saturn SA-I model in the first free-free bending mode of

oscillation are compared to those obtained by experiment and

other theories in Figs. 29 and 31. For both configurations all

the computed results establish close trends in the measured data.

By contrast, all results as riedicted by previous theories are in

considerable discrepancy. For both configurations the

aerodynamic damping is found positive, and therefore it provides

stabilizing effects within the Mach number range considered.

6. With the H-G model, the BTM is computationally

efficient and robust for unsteady flow computations in the full

frequency range.

7. Although the total number of panels needed for BTM is

comparable to that of a surface panel method, the CPU time is

only one tenth of the latter.

8. The BTM places the control points on the exact body

surface whereas a surface panel method usually places the control

points on the approximate surface.

9. To validate the present method, numerical examples have

been studied for various three-dimensional configurations. These

include: steady pressures on three asymmetric conical bodies,

generalized forces for cylinderical panel flutter and stability

derivatives for bodies and wing-body combinations. It is found
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that all computed results are in good agreement with existing

theoretical results and measured data.

10. The combined use of the developed AHGM and the BTM

allows the wing-body surface to be the only computed domain.

Moreover, the body-wing formulation can directly yield the

unsteady pressure on wing planforms. Hence, the present

computation procedure clearly leads to the development of a user-

friendly program code. 0

Finally, we conclude that all methods proposed have been

thoroughly validated with existing theories or measured data. It

is believed that all methods developed thus far can become 0

effective tools for supersonic aeroelastic applications to

realistic configurations.

Throughout three phases of this development, most of our

work has been presented in the AIAA meetings as well as appeared

in various kinds of AIAA Journals, (See Refs. 47 to 54). For

technology transfer, one report along with the developed program

code has been forwarded to Army Missile Command (MICOM) in

Huntsville, Alabama in 1986 (Ref. 55).
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APPENDIX A

LINEARIZED EQUATIONS IN THE BODY-FIXED COORDINATE SYSTEM
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APPENDIX A

The body-fixed coordinate system can be related to the wind-

fixed coordinate system of Fig. 3 by the following transformation

X = x' - x,(X),t ) Z$ (A.I)axh

y =y'

z z' + h(x',t')

where h(x',t') is the instantaneous normal displacement of the

body and only linear terms in h are retained since it is assumed

to be small.

The operators 7, 72 and 7. of Eqs. (2.2) and (2.3) in

curvilinear coordinates are given by (see Ref. 39)

__I 1;j- a + 1 a a3 (A.2)
h h1  q1  h a q 2  2 + aq 3

1 h3 [0 O____(~h 3 l2 a ___hhA) A3O2O3

and

72 1 [a (hh +w ) a h_La + a) hh, a)
h~h2 h3 1qj h g 7 +, q-- h2 3q7 2 5-3 h aq3

(A.4)

where q1 , q2 and q3 are the curvilinear coordinates, a,, a2 , and

a3 are unit vectors along these coordinates, h, h2 and h3 are

the matrix coefficients defined as

ax' 2 a 2 (A.5)
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and x', y' and z' are the cartesian coordinates.

In the present case

h O2h
h, = I Zx2

h- 1 A.6)

h3

where the nonlinear terms in h(x,t) have been neglected. 0

The total potential 0 in the body-fixed coordinate system

can then be expressed as

Q(x,y,z,t) = x + hx(x,t)z + O(x,y,z,t) (A.7)

where O(x,y,z,t) is the perturbation potential. From Eqs. (A.2),

(A.4) and (A.6) and retaining only linear terms in h we obtain

70 (1 + OX - hxxZox) ex + Oyey + (hx  + Oz)ez (A.8)

72 Q: hX Xz + Oxx - 2h..ZOXX - h zxxZ - hX××ZOX

+ y Y + hxX Oz + Oz z ( A. 9)•

The time derivative in Eqs. (2.2) and (2.3) in the body-

fixed system is given by

a a ax 3 a z a3
tv -t +  at x +  t' --z

at h t z- + ht - (A.IO)
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Therefore

--- I z h, z(l + + hPA. ii

at 2 h×) -zh.tZz l-

+ h P A. 12

We can now compute all the terms of Eqs. (2.2) and ,2.3) in

the body-fixed coordinate system. If only linear terms in P are

retained the following linear equation is obtained

xx - 2 h x x zOxx - hxx x Z x + -yY + hxx Oz + (Pzz

M2 g [0,t h.t t z × ht Z(P x ,t + ht t 0z + h t 0z

2xt- 2hxZ - 2hxxz~x$ + 2hx (D + 2h 'zt

- 2h,, zt × + 2htOxz + .x (1-2hxxz) -hxxxZOx

+ hxxO z + 2hxo×$ ] (A. 13)

Now, letting h(x,t) = g(x)6(t) = 6oelktg(x), and

0(x,y,z,t) = 0 (×X,y,z) + 6,e'kt¢ 1( x,y,z), with 5,<<l, and

substituting these into Eq. (A.13) yields the following

equations:

l-Ma '; xx " 2oy 0 A. 14)

* for order of one and,
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1-M2 
)- - 2ikM 2 

1z k

-M 2  + €kx M- ¢9y 6

2Lk2g[ z - k- g¢,z - 2ikg''zo -, 2g'ikoo

2g' ikzo,,,-- 2 gik~ot6 x - -''z0 2g''zqo x g' O

2g'¢o~z - g'' oz -- 2g''Z 0o x + g'' zo 'A.15)

,or order of 6-.

In cylindrical coordinates Eqs. (A.14) and (A.15) become

(I-M2 ) oxx + €err + r + 10A . 16)+7 Oo rs o r 0 , + T 0

(1-NI2 ) o + 01 z- + 2ikM2 o1€  + k2M2 €
(I-i) Czx + ¢ r 1 T-r 2  '6ee E)O

(k2 g'roo - - 2ikg''ro> + 2g' ik 0

- 2g'ikro. + 2 giko, - ...'r~o× - 2g''rgo'-

+ -1 2g'€o  ) cose + (k2 goe -koe

- 2 gikoox e - g e- 2 g ox e ) I sin

cse 0, sine) + 2g''ro.0 cose

+ 2g' '' ro×cose (A.17)

For a body of revolution the mean flow potential o is

independent of e, and the cross flow potential can be expressed

as 0 ×(x,r,e) = 1 (x,r)cose. Thus Eqs. (A.16) and (A.17) become

l'-M1 ) ¢oxx - 0 rr + or 0 (A. 18)
r
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(1-W) + + oil- - 2ikM2 0, +

M2 k2gtro,,, - k 0r- 2ikg''ro,), + 2g'ik~or

-2g'ikr,),, 4- 2giko,, )ro - -g'o.

*+ ''0,+ 2g'o 0 .,]

2g' ro,)XX + 'l~o3 - g'' 0or (A. 19)

99



0

APPENDIX B

0

EVALUATION OF THE UNSTEADY POTENTIAL AND VELOCITIES APPLYING THE

* HARMONIC GRADIENT MODEL

94



APPENDIX B

The integral solution of the homogeneous unsteady wave

equation, i.e. Eq. (2.8) reads

fx-pr
01 (x,r) 7 F(C) r K(×-l,§r)df (B.1)

where the kernel function K, as defined in Eq. (4.2) is given by

K(x-c,§r) e- iL(x-) cosXR (B.2)
R

where R=z(x-r) 2 -# 2 r 2 
, = kM 2 /' 2 

, x = kM/8 2

and F(C) is the dipole strength. The value of F(() at f=0 is

zero in order to satisfy the Mach wave condition.

For integration of Eq. (B.1) it is convenient to use the

relative distance x-1 as the independent variable instead of C.

Hence, we define x o  x - I and dt = - dx o

where at I = 0 , x0 = x

and at I = x - pr ,x = Ar

and Eq. (B.1) becomes

1(x,r) - rF(x-x o ) e ( cosxR )dx o  (B.3)
fx0

where Ro = VX 2
0 -,

2 r .

Integrating Eq. (B.3) by parts and applying the Mach wave

condition at x-pr=O, we obtain
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0 , ( x , r ) = F e- x -xao) e, 
•f 

r

27r -i X S S 1

P ax° [F(x-x o )e UXJ S(x°, dr)dxO (.4)

where S(xo,r) = xcsXr 2 -f2 r
fir /r2 -§2 r2

The first term of Eq. (B.4) is zero at the upper and the 0

lower limits since F(O)=O for a pointed body and S(fr,pr)=O along

the apex Mach wave. Consequently, 01(x,r) can be expressed as

1 8 r a) ei'Uo
01 (x,r) = - 1  -r IF(x-x°) x°] x-S(xo,pr)dxo (B.5)

As discussed in Section 4.2, to solve for Eq. (B.5) the

dipole strength function is discretized into elements along the

body axis and the potential is evaluated at the discrete field

points (x3 , r ).

01 (Xj,rj) = 2- X [Fi x ( × -x )e 0]

i=1 3i -1

a
- S(x°'fir )dx° (B.6)

where 1, =0 and Ij+ =x, -prj.

Introducing the Harmonic Gradient model (as discussed in

Lection 4.2),

a_ [F (x x)ei Lx 0] = [a(x,X) +bl i Ax 0 (B.7)
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Eq. (B.7) amounts to stating that the dipole strength is
bi. /(xj -x o  _u

S(x-x o ) ,, + )(e i 0  I) - (x-x o ) (B.8)

In the limit of k-*O ( or A-*0), Eq. (B.8) is reduced to

F2(x,-x o )  = - (x -xo)2 - b,(xj-x o ) (B.9)

Now, the doublet strength model as given by Eq. (B.9) is the

same as the one used by Tsien 3 9 for the steady angle of attack

case.

Substituting Eq. (B.7) into (B.6) yields

01 (x j , ) = 1 -J +- [a, (xJ-x °) + b i  le- i IXO

- -S(x°,,rj)dx 0  (B. 9)

In order to determine S(xo,flr j ) it is convenient to apply

the following transformation:

Let r=prjcosha , and hence dr=fr§sinhada

where at v=prj O'=0

and T=x o , cosh - x
Ari

a cosh- I Xo/Prj10 cos(xfrj sinha)du.

By applying Leibnitz's rule,
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r -S( xO f r,) X" c S X X - l r 2
Or r vX2 -,82 r 2

(B. 10)

-cosh- I 1xo /,rJ \g sinhor sin(Xflr, sinha)dq

Now a second transformation is introduced:

Let sinh=u , hence da= du

1i+u 2

where at o-0 , u=O

and a=cosh - I x  u=sinh(cosh - (x )).
P ri Pri

The integral term of Eq. (B.1O) now becomes

---- X sin (X8r u)du .0 /U2 + I

Using Lashka's2 7 exponential series substitution, namely

N
u 1 - aefc9

ane- n cu

¢l + U 2  n

where the constant "c" and the coefficients "an" can be found in

Ref. 27. Letting xo=6rjcosh;, and integrating Eq. (B.l0) term by

term yields
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*---S(frj ) = - coshT cos(xfirsinhr) + cos(xI r~sinhT)x

+N -ncsinh>
( Xprj) 2 +n 2 c 2

[-n c sin(XBrisinhT) - xrjcos(x#rrsinhr)]

N

_ _ S a n  (-xf r, )B 11

xflr I ( Xr) 2 +nc 2 (.11)

By substitution of Eq. (B.11) into Eq. (B.9) we obtain

cosh- (x_- + I )

0=(xj,rj) -1 h [ai(xj-prjcoshr) + b i ]

• i = I cosh-' Arx_ i__
fir,

e-ipprjcoshT -r coshv cos(Xp/risinhr)

+ sinh? 8 1-1 + cos(Xprjsinhr)

N -ncsinhT

+ r +n [-n c sin(xpr sinhT)

n~

N
-Xfr cos(xflr sinhr)]flr x an X2,82 r ]di

( Xr i)2+(n0)21
n=1

(B. 12)

Since all the terms of the integrand in Eq. (B.12) are

regular, they can be integrated numerically by using a Gaussian

• quadrature formula.

The velocities in the x and r directions are determined by

taking the derivative with respect to x and r in Eq. (B.3).
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After the derivatives are taken the dipole strength function is

discretized and the Harmonic Gradient model applied.

The x-component of the velocity can be expressed

cosh_ (xI-i +I)
i I P ars -iafir cosh-rC x (xj r3 ) - 2ce

, a,6

-coshr cos(\fir sinhr) + Psinhr

1 + cos(Xfrjsinhr)+ a n -ncsinh c

I(\,8r 3;
2 +(nc) 2

[-nc sin(\,8risinhr) - Xfrjcos(XfrJsinhT)]firjX

N ]
n(-> )2 r 2i dr (B. 13)

n=1

Again Eq. (B.13) can be integrated numerically by using

Gaussian quadrature since all the terms are regular.

The r component of the velocity becomes

a - 2 [ai (x -x°) + bi Ile 0

S(x0 ,Ar J )dx o  (B.14)ari 2

next, letting xo = 8rj coshr and applying the

differentiation with respect to r,, to Eq. (B.10) yields
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'3 coshr cos(xflr-sinhr)
(3 ar 2S(cl~ ar r~sinhr

IT fXfsinhou sin(Xflr sinha)da

* coshv cos(Xflr,sinhT)
r 2 sinhr

+ coshr Xfl sin(xflr,sinhr)

* - X2 g 2 sinh2cisin(xlrsinha)dou

(B. 15)

When the transformation sinho-u is introduced, the integral

term of Eq. (HA15) becomes

,sinhT U2 udJ X2 ,62  sin( xpr~ud

Again, when Lashka's exponential series substitution is used this

integral becomes

.2 .,2 6rsinhr si(p ih)+cos(\flr,sinhr) )2.

N -ncsihr
>-,8 Lfr -inh(n c cos(xflr sinhT))

n= 1

+ Xir sin(xgr sinhr)] - nc2+(pr 3  ((nc)(X8rj)2)

cos(Xflrjsinhr) -2 n c Xfrsin(XflrjsinhT)]

,2 p2  
- 2 p2 an( (nc) 2-( Xfir ) 2) (B. 16)

),2 ,62 r 12  ( ((nc) 2 +( )Prj )2 )2

With Eq. (B.16), ar2  of Eq. (B.15) can now be expressed in

101



a series form, i.e.,

_32__~g coshr cos(x~8r~sinhTr) iXfl coshr sin(\flr,sinhz)

XGsinhr sin(xpr *ihr - cos ( xfrsinhr)
nr j r nt 2

N -nes inhx

I (xfr' ) 2 +( nc) 2

K inhr (-n c cos(Xflr sinhr )+Xf6r sin(k>flr sinhi)

+(nc) 2 (>A fl [y

-2 n c X,6 r sin(xPrsinhtr)] 12

>X2# 2 an((nc)2 -(xp.r,)2) (.7
I ((nc) 2 +(X,)2)2 (.7

Finally where Eq. (B.17) is substituted into Eq. (B.14) and

after some arrangement, we obtain

cosh-'(
-I-1x - -- r a, (xj-P6rjcoshr)sbi]

eiM1= forj' 8oh r{O i1 (P )

+ Xp coshr sinh~sin(Xprjsinhr)

- xp sinht sin( xprsnT - inh

cos(xGr sinhr) + >,2 ,82 r j sinhr
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N - ncsinhx
*~~~n (x63

2 -nY sinhr(-n c cos(xflr sinhTr)

+ X~rsin~~r snhr) + 2 f2r, sinhr
\frsi(,8 inh) (nc) 2 +i( Xflr,) 2

[((nc)2 -(%flr 9 2 )cos(Xlrs1nhr)/

-2 n c >X.rsin(xr~sinhr)] I dr (B.18)

All the terms in Eq. (B.18) are regular and can be

integrated numerically by a Gaussian quadrature.
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APPENDIX C

ON THE APEX SINGULARITY FOR OSCILLATING POINTED BODIES: WIND-

FIXED VERSUS BODY-FIXED COORDINATE SYSTEMS
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APPENDIX C

It has been known for some time (see Refs. 17, 41, 42) that,

in the cross flow potential for an oscillating body in the wind-

fixed coordinates system, a singularity at the apex arises. The

origin of this singularity is the second-order derivatives of the

mean flow that appear in the boundary conditions and unsteady

pressure coefficient when these are evaluated at the mean

position of the body surface. For a body in rigid oscillation

with respect to x, the tangency condition and the unsteady

pressure coefficient are respectively given by

#r - R' ix = 1 - . + (x-XG (#orr - R'#oxr - ik)

+ (x-xG (orr - R' 0 0ox - ik) at r=R(x) (C. 1)

C 1 - 2So(i + #ox)#1x + #or1r + ik# 1

- (x-xG)(xr(l + Oox) + #orrOr)] at r=R(x) (C.2)

where So 1 - - M2 (200 + + X )]+/- k is thewh re SO = I 2 x 0 0

reduced frequency, 0. the mean flow potential and 0, the unsteady

flow potential. The second-order derivatives of 0o can be better

shown to be singular from slender budy theory. The velocity Oor

in the slender body theory (Ref. 5) i

RR'
given by Oor R , and its derivatives with respect to x

and r by

R9 2 
+ RR'' RR'

and #' rr - r(C.3)
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On the body apex these terms behave like therefore

for a nonvanishing R'(0) they are singular.

In the body-fixed coordinate system the singularity at the

apex has passed usually unnoticed because the first-order

equation instead of the linearized one has been solved in this

system and then the second-order derivative terms do not appear

in the formulation.

For a body in rigid oscillation with respect to x, the

complete formulation in the body-fixed system is given by:

Governing equation;

(1-NI0) 1x. + O1rr + 1 -r
l 01 + k2

Mj
2 4 - 2ikM 2

0 1 ×

M2 k 2 (rox-(-XxG ) +or ) + 2ik(or-ro + (%-x r

+ 200 ,] (C.4)

Boundary conditions;

01= 0 at x-flrSO C.5)

01, - R'01. =  -1 - ik(x-xG RR') at r=R(x) (C.6,

Pressure coefficient;

C' = - 2S,[4'x (i+4o) + or(l#ir) + ik((x-x,) 0),

- R +ox - 01)] at r=R(x' C.7)

If the solution of the linearized equation in the body fixed

is attempted we need to account for the right-hand-side terms in
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Eq. (C.5). This can be done through the following particular

solution

,!P(x,r) = ro× - (x-xG )Or (C.8)

Therefore the solution of Eq. (C.5) can be expressed as

0, (x,r) = oh(x,r) + OP(x,r) where ot is the solution to the

homogeneous equation.

By substitution of this equation into Eq. (C.7) and (C.8) we

obtain

0hr - R'Ox =  -1 - ik(x-xG + RR')

- 00 - R~or + (x-xG)'( orr R'0oxr)

+ R'(Ooxx-Or) at r=R(x) (C.9)

and

C' = -2S 0 (9hX (l+0ox) + #or 0r + ikoh + ROOx

- (x-x G )(0oxr (l+Oo ) + Oor~orr)

+ R( 0ox 0ox + Ooroxr)I (C.10)

It can be noticed that when the linearized equation is

solved in the body fixed system also, second-order derivatives of

the mean flow, and therefore singular terms, appear in the

tangency condition and pressure coefficient.

In terms of slender body theory Hoffman and Platzer12 have

shown that although the velocity Oir, in the wind-fixed

coordinate system is singular at the body apex, the pressure

coefficient is regular. In the body-fixed system Revell 2' also
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has shown that, within the approximation of the slender body

theory, the pressure coefficient as obtained from the solution to

the linearized equation for the unsteady cross flow, also remains

regular.

In terms of not-so-slender body theory, this apex

singularity has not been investigated before. In this Appendix

the formulation in the wind-fixed system for unsteady flow is

presented in a conical coordinate system (see Fig. 58) and shown

that in this conical coordinate system the apex singularity is

totally removed. For pointed bodies the body apex can be treated

as a cone and, therefore, the assumption of conical flow and the

use of a conical coordinate is justified at the apex.

The conical and cylindrical coordinates are related by the

following equation

s 2 
= X 2 + r

2

~(0.11)

tan Y = r/x

The mean flow velocities in the x and r directions are given

by (see Ref. 43)

coti.
0 , = - a cosh

- 1 ( t )

(C.12)

Oor = a Icot 2V,
2

where a 1 cotu.
coto~cot2 u-p 2 

+ cosh-1 ( )

and a is the half-cone angle.
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If the terms Orr and 0.rx are expressed in the conical

*coordinate we obtain

Oorr 
a cot

2 V 1

sin vv'cot 2 v-p 2 S

(C.13)

00rXa cot Y

sin Vwcot 2 v- s

and Eq. (C.I) when expressed in the conical system becomes

01= -s coso[i + acosh-l(cot')] - a(cosa-s)
sin 3 

Vcot
2 

0-d
2

- ik(scoso-s ) at v:a (C.14)

It can be seen that no singularity appears in this equation.

The form of Eq. (C.14) suggests that the solution 01 can be

sought in the form of

0 (s,v) = snf,( ) (C.15)

n =0

When the governing equation for 01 in the wind-fixed

coordinate system is transformed to the (x,v) coordinate and Eq.

(C.15) is used we obtain
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sn_-2[fn(v)(n(n-l)(sin2v-f2cos2v) + n(cos 2v-l 2 sin 2 v)

n =0

1
+ n si2y ) + f'n(Y)(2sinvcosY(n-l)M2 + coty)

+ fn (v)( 2 sin 2 V + cos2v)] + k2 M2 snfn(v)

n 0

- iM s n= 0- 2iki[ sn- (fn (v)nCosv-fn(v)sinv]] =0

n =0
(C.16)

When Eq. (C.15) is used to satisfy the boundary conditions,

Eq. (C.14), the following equations and boundary conditions for

fo, f, and f, (where j=2,3,...) can be obtained from Eqs. (C.16)

and (C.14)

(-f2 sin 2 y + cos 2v) fo'(Y) - 2M2 sinvcosvf'(v)

1
+ cotvfo(v) si2 fo(V) = 0

fo (y) = 0 at Y=u (C.17)

(Mach wave)

af'(v) = sG( + ik) at v=7

sn3 q+j/Cot 2 o'-fi2  (cone surface)

where s. is the center of rotation in the conical coordinate

system.
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(-6 2 sin 2 V+cos 2 V)f'(v) + cot fl ( )

- (f 2 sin 2 V+cos 2 cot 2 v)f, (v) - 2ikM2 sinvf 0o(v)

f1 (V) 0 at V=U
(C. 18)

f() =- coso'jl + acosh-1(co )

+ a - ik] at v=,

s in 3 gVlcot 2 a-82

and finally a recurrence formulation can be written for fj(V)

with j=2,3 ....

f,(v)[j(j-l)[sin 2v- 2cos2 v) + j(cos 2 v-g 2 sin 2v)

1
+ sin2,] + f!(v)(2sinvcosv(j-l)M2 + cotv)

+ f '(v) ( 2 sin2 v+cos 2 y )

(C. 19)

=- k2 M 2  f(v) + 2 ikM 2  (f(v)(j-l)cosv - f'(v)sinv)0- i -i i-i

fj (i) 0 at v=,u

f' (V) 0 at Y=o, for j!-2

It can be seen that the solution to Eqs. (C.17), (C.18) and

(C.19) do not give any singularity at the apex and therefore the

potential as given by (C.15) will be regular at the apex.

However, as with the slender body theory, the velocity Oir will

be singular at the apex. As can be shown, it behaves like 1/s.

ill
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We need to investigate whether or" not the pressure remains

regular. To do so, let us consider first the terms #oxr(l+Oox) +

OOrrOor in Eq. (C.2), which can be expressed at v=a as

I a cot(7Co0t <7

i a cot [1 - a cosh - (--) - a cota7cot20-§2]
ssinoicota-_pf2

and by substitution of the value of a

coto,
a cota F1 - .(oh- +CotOfCot2O,-l2] 0

cotaT
ssinVcot 2 -

p
2  cot v'cot 2 a-,l 2 +cosh - 1_

and Eq. (C.2) for the pressure coefficient in the (s,v)

coordinate can be expressed as

C' = -2So{(l+#o×)(cosv# 1 - sin ) + Oor(sinvis

+ - 0 } (C.20)

If Eq. (C.15) is substituted and the terms are rearranged,

we obtain

= 0  sn-1 {nfn(V) [cosi'(l+Oo.) + sinvwor]
n 0

- fn (Y)(sinv(l+#o0 ) - 0orcosv)} (C.21)

But sinv(l+oox) - OorCOSv) = -Oor + tanv(ox+l) = 0 at va:

by the mean flow tangency condition. Therefore
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CI = -2S o  sn-nfn(v)(cosv(l+0o.) + sinv #or) (C.28)

n=0

Eq. (C.28) is finite everywhere. Therefore it is proved

that for not-so-slender oscillating bodies the singularity at the

body in the wind-fixed coordinate system is a spurious one and if

the problem is formulated in a conical coordinate system, the

pressure is regular at the apex. The same conclusions can be

obtained if the previous formulation is done for the body-fixed

coordinate system.

Since the singularity in the conical coordinate system is

removed this solution for the body apex can be used as the

starting solution. For the rest of the body a cylindrical

coordinate system can be used and since the singularity has been

removed a regular pressure coefficient will be obtained

everywhere on the body.
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APPENDIX D

EVALUATION OF THE INDUCED UNSTEADY POTENTIAL AND VELOCITIES BY A
DISTRIBUTION OF SOURCES
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* APPENDIX D

As shown in Chapter 7 the induced potential by a

distribution of unsteady sources at the point x1 , r, , 0. is given

*~ by

x i -fir1

01 (xis,.) fFCBx - 9, Ai)df (D.1)

00

When the transformation 9 xi - fi cosha is introduced to Eq.

(D.1), the potential 01 (xiri'a.) can be expressed as

0

Ojx=j~m mx - 6i cosha) B(0 1f6i)do (D.2)

cosh-1 i..L

where B(O,fir1 ) = e-isfiri cosho- * cos(X8rsinho).

After discretizing along the x-axis and upon applying the

Harmonic Gradient model Eq. (D.2) can be expressed as

* ~ ~ 1 (xjr 1 ,m)=-j a~Im[e Mie-fi~oh]cos(Xirsinhr)da

j1l Ou (D.4)

where o. = cosh1("L -!.) and ao' coh'('6

Since the integrand in Eq. (D.4) is regular the integration

can be done numerically by a Gaussian quadrature.

* The velocities in the x and r direction can be obtained by

taking the derivatives with respect to x, and r, in Eq. (D.2).

Thus, in the x direction we have
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a i  [ c o s h - I F m ( O ) B ( c o s h - l x ir
ax, ax1  fr1  ir

0
a Fm(x, - Aricosha)B(ujpri)da (D.5)

cosh- 4i--

If the condition that the source strength at the body apex

is equal to zero is now imposed, Fm(O)=O, Eq. (D.5) is then

expressed as

0
=1_ Fm(x i  - jrjcosh()B(ajgrj)da (D.6)(3xi cosh- x i Cx

Eq. (D.6) after discretization along the body axis and upon

applying the Harmonic Gradient model can be expressed as

i (7j +-& ea cos(Xdrisinh)da (D.7)
O~-i

P =1

Since the integrands of Eq. (D.7) are regular the integrals

of Eq. (D.7) are evaluated numerically by a Gaussian gradrature.

The velocity in the r direction is given by

aa = [cosh-1 x i  ] F.(0)B(cosh-1 x , firi )
ar i  ari  fri fri

0
o x r-Arcosha)g(r1  r )]d a  (D.8)

cosh- li-
Pri

Now applying again F.(O) = 0 and after discretization and

making use of the Harmonic Gradient model Eq. (D.8) can be

expressed as
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ac [osh eiptfr co e - shco sinh a)

Or aJ = .cos(xfirisn

jl .

-i(Dr.cosh) -ix x(
(e -e i)i-A sinha.sin(X,6risi h ) d D 9

"'U

The integrals appearing on Eq. (D.9) are also evaluated

numerically by Gaussian quadrature.

Note that the transformations in Eq. (D.2), as previously

used by von Karman (Ref. 13) and Tsien (Ref. 40), provides only

the principal value for the integral. Furthermore, it also

removes the singularities along the Mach cone x - §r = 0,

rendering the numerical evaluation of the integral much easier.
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APPENDIX E

EXPLICIT EXPRESSIONS OF MATRICES [A]i, [Y],, AND [H]1

IN EQ. (7.11)
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APPENDIX E

The explicit expressions of matrices [A]i, [Y]jj and [H]j, involving

all the elements, in Eq. (7.11) are as follows:

M+1 '+1 rn+1 i41 i+1 -+ rn ij+1 1-~1 -

ZWh (S1  12 ~Si D~ COSh zw~ S1  D. sinG.
h=rn-. h=rn-1 hm

m+ 1 11 1+1 - M+1 ui1 M+1 i+1-

ZA, W h S i D1  CO5h ZWh (D1  coOh$ )2 ZWh (D1  )2 sin8hcos8h
0h~rn-1 n=n-1 h=m-i

!D+1 1+1 1+1 - m+' 3+ -r+1 i-
Eh S, sin8 h EW h(D I )2 sin8 h COS 8h w h (D: lsin8 h) 2

hrn-i h=rn-1 h=rn-1

rn+1 j+1 i+-i M+i j+1- i+1 -M+-i j+i i+ -

zw h S S I ZWh Di -i cosoh EW hDi Si I sin L
*h=M-i h=0-1 1=-

M+1 j+1 i+i - M+-i j+1ij+i - M+1 ,+i 1+1

Y]- ZW h S i D, cos8 h EW hD Di cos2 8h EW hD D1  s in 8 hcoso '
h=. 1 =m- h~-?-

n+s- js-i i+s- -+ msi J+i i+s- - M+i j+i 1+1 -

0w Zh S i D, sin$~ h Wh D D. sin8 h cos8h W h Di D, s in2 8h

~-s- h-s-i 1+1-

wM S Is wM+1 S,

WHi Wm~D:i sinflm W i 1 cos80  Wm D i1 COS*

i i - 1 M -- I M 1 - +

WM, D: s inem WM D + sin8 ~ WM + DI1 s i n i

119



0

REFERENCES

I. Farrar, D.J., "Structures," Journal of the Royal
Aeronautical Society, Vol. 60, November 1956, p'p. 712-720.

2. Woodward, F.A., "An Improved Method for the Aerodynamic
Analysis of Wing-Body-Tail Configuration in Subsonic and
Supersonic Flow," NASA CR-2228, 1973.

3. Magnus, A.E. and Epton, M.A., "PANAIR - A Computer Program
for Predicting Subsonic or Supersonic Linear Potential Flows
about Arbitrary Configurations Using a Higher Order Panel
Method, Vol. 1. Theory Document (Version 1.0)," NASA
CR-3251, 1980.

4. Chen, P.C. and Liu, D.D., "A Harmonic Gradient Method for
Unsteady Supersonic Flow Calculations," Journal of Aircraft,
Vol. 22, May 1985, pp. 371-379.

5. Adams, M.C. and Sears, W.R., "Slender Body Theory - Review
and Extension," Journal of Aeronautical Sciences, Vol. 20,
No. 2, Feb. 1953, pp. 85-98.

6. Miles, J.W. and Young, D., "Generalized Missile Dynamics
Analysis III - Aerodynamics," GM-TR-0165-00360, Space Tech.
Labs, The Ramo-Wooldridge Corp., Apr. 7, 1958.

7. Lansing, D.L., "Velocity Potential and Forces on Oscillating
Slender Bodies of Revolution in Supersonic Flow Expanded to
the Fifth Power of the Frequency," NASA TND-1225, 1962.

8. Platzer, M.F. and Sherer, A.D., "Dynamic Stability Analysis
of Bodies of Revolution in Supersonic Flow," Journal of
Space and Rockets, Vol. 5, No. 7, July 1968, pp. 833-837.

9. Tobak, M. and Wehrend, W.R., "Stability Derivatives of Cones
at Supersonic Speeds," NASA-TN 3788, September 1956.

10. Van Dyke, M.D., "First and Second Order Theory of Supersonic
Flow Past Bodies of Revolution," Journal of Aeronautical
Sciences, Vol. 18, No. 3, March 1951, pp. 161-178.

11. Bond, R. and Packard, B.B., "Unsteady Aerodynamic Forces on
a Slender Body of Revolution in Supersonic Flow," NASA-TND-
859, May 1961.

01
12. Hoffman, G. and Platzer, M.F., "On Supersonic Flow Past

Oscillating Bodies of Revolution," AIAA Journal, Vol. 4,
Feb. 1966, p. 370.

13. von Karman, T. and Moore, N.B., "The Resistance of Slender
* Bodies," Trans. ASME 54, pp. 303-310.

120

0



14. Hanson, P.W. and Doggett, R.V., "Wind-Tunnel Measurements of
Aerodynamic Damping Derivatives of a Launch Vehicle
Vibrating in Free-Free Bending Modes at Mach Numbers from
0.80 to 2.87 and Comparisons with Theory," NASA TND-1391,
Oct. 1962.

15. Hanson, P.W. and Doggett, R.V., "Aerodynamic Damping of a
0.02-Scale Saturn SA-l Model Vibrating in the First Free-
Free Bending Mode," NASA TND-1956, Sept. 1963.

16. Sewall, J.L., Hess, R.W. and Watkins, C.E., "Analytical and
Experimental Investigation of Flutter and Divergence of
Spring-Mounted Cone Configurations at Supersonic Speeds,"
NASA TND-1021, April 1962.

17. Platzer, M.F. and Liu, D.D., "A Linearized Characteristics
Method for Supersonic Flow Past Bodies of Revolution
Performing Bending Oscillations," LMSC/HREC A 784262
Lockheed Missiles and Space Company, May 1967.

18. Hoffman, G.H. and Platzer, M.F., "Higher Approximations for
Supersonic Flow Past Slowly Oscillating Bodies of
Revolution," Acta Mechanica, Vol. 5, 1968, pp. 143-162.

19. McCanless, G.F., "Aerodynamic First-Order Method for
Flexible Bodies," Journal of Spacecraft and Rockets, Vol. 7,
No. 9, Sept. 1970, pp. 1037-1042.

20. Lighthill, M.J., "Note on the Swimming of Slender Fish,"
Journal of Fluid Mechanics, Vol. 9, 1960, pp. 305-317.

21. Revell, J.D., "Second-Order Theory for Unsteady Supersonic
Flow Past Slender, Pointed Bodies of Revolution," Journal of
the Aerospace Sciences, Vol. 27, No. 10, Oct. 1960, pp. 730-
740.

22. Sauer, R., Introduction to Theoretical Gas Dynamics, 1st
Ed., J.W. Edwards, Ann Arbor, Mich. 1947, pp. 77-81.

23. Ferri, A., Elements of Aerodynamics of Supersonic Flows, ist
Ed., pp. 210-235; The Macmillan Company, New York, 1949.

24. Krasnov, N.F., Aerodynamics of Bodies of Revolution,
American Elsevier Publishing Company, 1970, pp. 239-263.

25. Schiff, L.B. and Sturek, W.B., "Numerical Simulation of
Steady Supersonic Flow over an Ogive-Cylinder-Boattail
Body," AIAA Paper No. 80-0066, 1980.

26. Garrick, I.E., "Nonsteady Wing Characteristics," Vol. 7,
High Speed Aerodynamics and Jet Propulsion, Princeton
University Press, 1957, pp. 668-679.

121



27. Laschka, B., "Der harmonisch Schwingende Rechteckflugel bei
Cberschallstr6mung," Bericht der Ernst Keinkel
Flugzugbau GmbH, 1960.

28. Landahl, M.T. , Unsteady Transonic Flow, Pergamon Press, New
York, 1961, p. 19.

29. Ashley, H. and Zartarian, G., "Piston theory: A New
Aerodynamic Tool for the Aeroelastician," Journal of

Aeronautical Sciences, Vol. 23, No. 12, Dec. 1956, pp. 1109-
1118.

30. Liu, D.D. and Pi, W.S., "Transonic Kernel Function Method
for Unsteady Flow Calculations Using a Unified Linear
Pressure Panel Procedure," AIAA Paper No. 80-0737-CP.

31. Brong, E.A., "The Flow Field above a Right Circular Cone in
Unsteady Flight," AIAA Paper No. 65-398, 1965.

32. Ericsson, L.E., "Viscous Effects On Missile Aerodynamics at
Low Angles of Attack," Journal of Spacecraft and Rockets,
Vol. 18, No. 5, Sept.-Oct. 1981, pp. 401-405.

33. Fung, Y.C. , An Introduction to the Theory of Aeroelasticity,
John Wiley and Sons, New York, 1955.

34. Ward, G.N., Linearized Theory of Steady High-Speed Flow,
Cambridge University Press, Cambridge, 1955.

35. Devan, L., "Conical, Noncircular, Second-Order, Potential
Theory of Supersonic Flow," AIAA Journal, Vol. 22, May,
1984, pp. 618-623.

36. Woodward, F.A. and Landrum, E.J., "The Supersonic Triplet --
A New Aerodynamic Panel Singularity with Directional
Properties," AIAA Journal, Vol. 18, No. 2, Feb. 1980.

37. Dowell, E.H. and Widnall, S.E., "Generalized Aerodynamic
Forces on an Oscillating Cylindrical Shell," Quarterly of
Applied Mathematics, No. 1, 1966, pp 1-17.

38. Platzer, M.F., Brix Jr., C.W. and Webster, K.A., "Linearized
Characteristics Method for Supersonic Flow Past Vibrating
Shells," AIAA Journal, Vol. 11, No. 9, 1973, pp. 1302-1305.

39. Arfken, G., Mathematical Methods for Physicists, Academic
Press, New York, 1970.

40. Tsien, Hsue-Shen, "Supersonic Flow over an Inclined Body of
Revolution," Journal of the Aeronautical Sciences, Vol. 5,
No. 12, Oct. 1938, pp. 480-483.

122



41. Stannard, E.A., "Nonsteady Transonic and Supersonic Fl.w
about Flexible Slender Bodies of Revolution," Ph.D. Thesis,
University of Illinois, 1961.

42. Labrujere, T.E., Roos, R. and Erkelens, L.J.J., "The Use of
Panel Methods with a View to Problems in Aircraft Dynamics,"
NLR MP-77009U.

43. Liepmann, H.W. and Roshko, A., Elements of Gas Dynamics,
John Wiley and Sons, New York, 1957.

44. Tobak, M., "Damping-in-Pitch of Low-Aspect-Ratio Wings at
Subsonic and Supersonic Speeds," NACA RM A52L04a, 1953.

45. Heitmeyer, J.C., "Lift, Drag, and Pitching Moment of Low-
Aspect-Ratio Wings at Subsonic and Supersonic Speeds --
Plane Triangular Wing of Aspect Ratio 3 with NACA 0003-63
Sections," NACA RM A51H02, 1951.

46. Henderson Jr., Arthur, "Pitching-Moment Derivatives Cmq and
C at Supersonic Speeds for a Slender-Delta-Wing and

Slender-Body Configuration and Approximate Solutions for
Broad-Delta-Wing and Slender-Body Combinations," NACA
TNL553, 1951.

47. Garcia-Fogeda, P. and Liu, D.D., "A Harmonic Potential Panel
Method for Flexible Bodies in Unsteady Supersonic Flow,"
AIAA 24th Aerospace Sciences Meeting, January 6-9, 1986,
Reno, Nevada, AIAA Paper No. 86-0007.

48. Garcia-Fogeda, P. and Liu, D.D., "Aeroelastic Applications
of Harmonic Potential Panel Method to Oscillating Flexible
Bodies in Supersonic Flow," May 19-21, 1986, San Antonio,
Texas, AIAA Paper No. 86-0864-CP.

49. Liu, D.D., Garcia-Fogeda, P., and Chen, P.C., "Oscillating
Wings and Bodies with Flexure in Supersonic Flow --
Applications of Harmonic Potential Panel Method," September
7-12, 1986, London, U.K., International Council of the
Aeronautical Sciences, I.C.A.S. Paper No. 86-2.9.4.

50. Garcia-Fogeda, P. and Liu, D.D., "Three Dimensional Analysis
of Supersonic Flows Around Arbitrary Bodies Using Boundary
Collocation Method," Boundary Element Techniques:
Applications in Fluid Flow and Computational Aspects,
Computational Mechanics Publications (edited by Brebbia and
Venturini) pp. 75-88, June 1987.

51. Garcia-Fogeda, P. and Liu, D.D., "Analysis of Unsteady
Aerodynamics for Elastic Bodies in Supersonic Flow," Journal
of Aircraft, Vol. 24, No. 12, December 1987, pp. 833-840.

123



52. Garcia-Fogeda, P., Chen, P.C., and Liu, D.D., "Unsteady
Supersonic Flow Calculations for Wing-Body Combinations
Using Harmonic Gradient Method," January 11-14, 1988, Reno,
Nevada, AIAA 26th Aerospace Sciences Meeting, AIAA Paper No.
88-0568.

53. Garcia-Fogeda, P. and Liu, D.D., "Supersonic Aeroelastic
Applications of Harmonic Potential Panel Method to
Oscillating Flexible Bodies," Journal of Spacecraft and
Rockets, Vol. 25, No. 4, July-August 1988, pp. 271-277.

54. Liu, D.D., Garcia-Fogeda, P. and Chen, P.C., "Oscillating
Wings and Bodies with Flexure in Supersonic Flow," Journal
of Aircraft, Vol. 25, No. 6, June 1988, pp. 507-514.

55. Liu, D.D. and Garcia-Fogeda, P., "Operational Manual for
HPPI Code: Unsteady Supersonic Aerodynamics for Flexible
Bodies," ASU Report CR-R-86003, January 1986.

124

0 |



0"

AA

12



Fig. 2 Sequence of flutter modes at intervals of 1/100
second during the flutter incident.

126



00

03

12



F-

0,) 1.05
03 0 CHARACTERISTICS (SIMS)
L - PRESENT HPP

> - USSAERO

-1.03 VAN DYKE Ist ORDER
L< -- VAN DYKE 2nd ORDER

U-

. 1.0 1
U-.. R(X)- .176X, 0 -. X _. .5

R(X) 088, .5 < X < 1.
I--

0 0.99-
-j
LU

-J
- 0.97-

0

N 0.95 I

0.0 0.2 0.1 0.6 0.8 1.0

x

Fig. 4 Comparison of normalized velocities on a cone-
cylinder surface at M.=2.075 and angle of attack

128



* -ND- PRESENT HPP NONLINEAR

CHARACTERISTICS EXACT

PRESENT HPP
.20 ....... USSAERO

.16- R(X)=.1316(2X-X 2 )
0% <X :_ 1

m co2.0

•~~~ .12 - '

a-o

.08-

.04-

00
.2 .4 .60,. 1.0

0. -.04

Fig. 5 Mean flow pressures for a parabolic-ogive at
M =2.0 and angle of attack a=O.

0

129



-- '- PRESENT HPP NONLINEAR
-CHARACTERISTICS EXACT @
PRESENT HPP

.20 ...... USSAERO

moo: 3.0

0

.08-

.04-

0

-.04-

Fig. 6 M'ean flow pressures for a parabolic-ogive at
%=3.0 and angle of attack =O*.

130



0o

04 o

8o)

co 0
md/ '3in 13~ -IV.*

o o

w C

o o-N

cr X X vi

N ~ N

LL 4, CS)

0 L" (0 d2

z1 3



zz

P2 p 3e4

cI C 4 5

Fig. 8 Panel arrangement for axisymmetric bodies.

132)



0

* 3
- - *1

4,

4.)-
0

x

00
XII

0

4,

- - 0
>. 0 U
~

* . 0- X

4JLL

1~

*
0

- U
* .9

4J~ 0
X

0 K 4,

-, 0

II

0
X

I. I~'~ -
* C 0 I

- 4,

0 -,

4,

S
.9

0

0

13:;
0



00

I /

Iu

IT

QI C

00

I

XN

= =

to

U-) V Z

N
II

- 34



*a m
_ ~ .-. -2

a- CL a.

* ~f)- vi zC

I a. a-
ul

do N

:11 3



x

(n0

a.~~C' 4,a v

zJ~cZZ
(1,0 .i

It Q

N0

do N I0C

(00

dO~ 
-I3

36~h



20-

- 00

5-

01
1 2 3 4 5

-PRESENT HPP PSEUDO WIND FIXED
-- PRESENT HPP BODY FIXED

* - SLENDER BODY

R(X) eX, 0:5XS 1

135*

OF - -05

45

00
1 2 3 4 5

Fig. 13 Modulus and argument of the generalized forces
versus Mach number for a cone in first bending
mode (1=3) at reduced frequency k=2.0.

13-7



-PRESENT HPO PSEUDO-WIND FIXED
-- PRESENT HPP SC0Y FIXED

SLENDER SOY

40-
R (X) CEX, 0 5 X 51

30-

0
1 2 3 4 5

800

135*

0 0
1 2 3 4 5

Fig. 14 Modulus and argument of the generalized forces
versus Mach number for a cone in first bending
mode (1=4) at reduced frequency k=2.0.

138



- PESENT HPP PSEUOO-WINO FIXED
* -- PRESENT HPP BODY cIXED

-SLENDER 900Y

40- <]

30

00
1 0

10

1 2 3 45

1800

-135-

12 3 4 5

0 a

Fig. 15 Modulus and argument of the generalized forces
versus Mach number for a parabolic-ogive in first
bending mode (I=3) at reduced frequency k=2.0.

139



-PRESENT HFPP PSEUDO-WNIND FIXED
-- PRESENT HPP BODY FIXED

SLENDER BODY

60 __

a~ 40-

o2 3 45

180"

- 35*

45*

01 2 3 4 5

Fig. 16 Modulus and argument of the generalized forces
versus Mach number for a parabalic-ogive in second

bending mode (I=4) at reduced frequency k=2.0.

140



40-

30-

10

00

-PRSSENT HPP PSEUDO WIND FIXED
-- PRESENT HPP BODY FIXED

*SLENDER BODY

I go-0-0

450.0

*0 71
12 3 4 5

M 0

Fig. 17 Modulus and argument of the generalized forces
versus Mach number for a cone-cylinder in first
bending mode (I=3) at reduced frequency k=2.0.



-PRESENT H-PP PSEUDO WIND F71XED
-- PRESENT HPP BODY FIXED

-- SLENDER BODY

80-_ _

4I0 5

180* -

900-S

0
1 2 3 4 5

0 
C

Fi.18 Mdlu n agmnto hegnraie8fre

vesu Mahnme oracn-yine nscn

bedn oe(=)a edcdfeunyk20

14



-PRESENT HPP
--- LINEARIZED MOC

SLENDER BODY

-8 =-05

-

- 4

SG
' -.4-

-.2 -XR(X) (2X-X2), O<x _<
XG=. 4

1.0 1.5 2.0 2.5 3.0
M c

Fig. 19 Comparison of theoretical damping-in-pitch moment

coefficients for a parabolic ogive at various Mach
numbers.

143



1.0

-0.48

-0. 0 LINEArIZ MASCE

R(X 5 .-X ), 0~ S~I XS. --0- BOND-PACKARO

0a - I I II

1+0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

MACH NUMBER, M CO

Fig. 20 Comparison of theoretical and experimental
damping-in-pitch moment coefficients for a
parabolic-ogive cylinder at various Mach numbers.

144



SG PRESENT HPP

~ -- SLENDER BODY THEORY
TOSAK -wEHREND CONE THEORY

10* NEWTONIAN IMPACT THEORY

-LINEARIZED MOC
RIX) -1763X, 0~ (5 X 3036 0 ASMA
R(X) rO691 X+ 0325, C AEDC

*3036 S X :5 10 0 NASA

'K4817 SRL (A8MA SAL.
B RL (eRL SAL.) REP.

SNOL RANGE
Q AEDC

-0.4 N

-0.2-

0.01 I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

MACH NUMBER, M CI

*Fig. 21 Comparison of theoretical and experimental
damping-in-pitch moment coefficients for a cone
frustrum at various Mach numbers.

145



0S

0

x x I

0 0/I

x N /- 0

z

x ~0D
w0

m- 0

.- . 0 -4

0 0 0 0 0 0
m -) N4 0

~ Lc. 0

Zzo~~ bj-.

4.) .,-r

0

N0

0 0 0

x .0

z L. .

x 0 >-

0~ a:

a. 0 0 ^
0~ w

La ow

0 0

0 0 0106



Z /

0 03

0 tc

00

- wt
x~

00

0~ I:

0 dJ .AI J~ .

x~L

do~~ 
-I3

47~



a.

LU N

a.0

o~LO

0 0

do I~

0 0 0 0 0
N N0

do U2 U



0

PRESENT HPP NONLINEAR

PRESENT HPP
BRONG-EXACT THEORY

* - --- SLENDER BOOY

3.0 - R(X): 1763 (2X-X )

0XG:O

2 5

Z R(X): .1763 X
-x O-X5

2L XGzO

2.-0

1.5

2.0 3.0 4.0 4.5

MACH NUMBER, Ma

Fig. 25 Damping-in-pitch normal force coefficients versus
Mach number for a cone and a parabolic-ogive.

149



* MEASURED DATA
--0- PRESENT HPP NONLINEAR

-PRESENT HPP
--- SPINNER CODE

-55- ERICSSON

-.50 -

-.4

I.2-0 3.0 3.5

Fig. 26 Damping-in-pitch moment coefficient for a
parabolic-ogive--cylinder at various Mach numbers.

1 50



00

00

*02

LL

I ca
6.L

o 00 0 0 0 L

90*N~VV :lN -O3



2 0

0'

00

a) Mean flaw pressure.

- PESENT s-PO

2 0 -- LENOCP 900Y

00

00 b) In-phase pressure.
0. _ _ _ _ _ _ _

-PPESENT HOP

-20 SLEN0ER 900Y
M.2 0

a.1

__________________ c) Out-out-phase pressure.
00

0,0 0,25 0.50 0.75 10

X

Fig. 28 Pressure coefficients for a Saturn SA-l

configuration at M.=2.0, reduced frequency k=1.8

and center of rotation at the apex.

15-2



00

0 a. 10 0 94-

La z1 / z

Q 4
wt-~ 10 I - D~..

0 0. 0

*j In U ~
0 0

0 X y

N 0 N 0w~
02 0 x

0~~ a

a z 6

0153 - 9



Kh h

,aK

GRAVITY OF
MODEL

Fig. 30 Schematic view of body in pitching and plunging
motion.

154



" U MEASURED DATA
S ESENT HPPF, .PEQ. EXPANSION
VON KARMAN (0. S.)

R(X)i3165X, VAN DY E (C.S)

05<X5 SLENDER 8ODY

2.4 x, 58

J2.0-

>16/

UjU

-.

0V

0 U/ I.

0 .4 . 1.2 .6 2.0 2.4

WIND OFF FREQUENCY RATIO, WH/Wc

*N 
E MEASURED DATA

IJ - PRESENT HPP
FREQ EXPANSION

--- VON KXARMAN (0. S.)
U R(X) 1I3165X, -- VAN DYKE (O. S.)

Z0 X S I -- SLENDER BODY
J 1.2 x, 58

rr I

Uj

U. 0

0 4 8 12 1.6 20 2.4

WIND OFF FREQUENCY RATIO, WH/Wc

Fig. 31 Flutter boundaries for a 7.5' cone at M.=2.0.

15



-A, N MEASUREO DATA

- ESENT Hpp
- FR D EXPANSION
--- iON KARMAN 0G S I

1I) 3165 x, /-AN OYXE (0 S)
O0 ,x I , SLENOR 90Y

d 2.0 X , . 58

,1 6 -mxum tunn, condifit K1 /
5- of b ,olUl I o Iu?? u o ./- ,.CL7IZ/ /

t

o 2 ,'1/'1 I

0 8 1.2 6 2.0 2.4

WIND OFF FREQUENCY RATIO, WH/Wo:

x M EASURED DATA
- PRESENT HPP

--0 FREO EXPANSiON
--- VON KARMAN (C SJ

VAN DYKE (0 S.)

R(X), 13165X, SLENDER 9OY
OSXSI

S12
xG• 58

w
Cr 8
LA.

115

(-

-

.L

o 4 8 I12 1.6 2-0 2.4

WIND OFF FREQUENCY RATIO, W H/W c

Fig. 32 Flutter boundaries for a 7.5" cone at M =3.0.

156



0X

a MEASURED DATA
2.0 - 0 PRESENT HPP NONLINEAR

PRESENT HPP

* FREQ. EXPANSION
VON KARMAN (Q. S.)

- - VAN DYKE. (Q.S.) R(X) =132X, O0 :5 X :5

SLENDER BODY XG=. 5 8

1.- -

LU

17



.74
a MEASURED DATA

--PRESENT HPP NONLINEAR

- PRESENT HPPrX
FREQ. EXPANSION

--- VON K(ARMAN (0. S.)

70 - VAN DYKE (0.5S.)

SLENDER BODY R(X): z.132 X, 0 :5 X 5 1.0
X G Z.58

.66

U--

IL

1. .62.428 .

58S



32

0/

3 MEASURED DATA

-:- PRESENT HPP NONLINEAR

-8 - PRESENT HPP
28 FREQ. EXPANSION

-- VAN DYKE (O.S.)

N- VON KARMAN (0.S.)

" 24- PISTON THEORY
-0 SLENDER BODY

20 _

.1 /

u.JI- /'
L 16- R(X):.132X, 0 <XS . /

< xG x .7 5  /

CL 12 -

LLI

z /
WI 8/

(D

Q 4-

00 0 I III

0 1.0 2.0 3.0 4.0 5.0 6.0

MACH NUMBER, Mco

Fig. 35 Divergence boundaries versus Mach number for a
7.5* cone.

159



r0

160~



C0 CN
-PRESENT HPP .25 .13

* E VAN .25 .13
USSAERO .25 .13

0.3-

*L1

x

0 0 0 8" 10010

16



C D CN0D 0 N

-PRESENT HPP .215 -. 084

DEVAN .215 -. 091

3 USSAERO .215 -. 090

0
M C = 2.0 X I

R(X, 2)AX --7r/2:5 e -"r/2

R(X, e) =.2X/(COS28 +1/4SIN 28)

7r/25&s -7r 3 /2
I I I

00 400 800 1200 1600

& (DEG.)

Fig. 38 Pressure coefficient for a half circle; half
ellipse cone at M_=2.0, a=O deg.

162



3.0 PRESENT HPP

--- USSAERO
ab =.0I

2.5

R(X, )=ax/(COS 2e
30 i (a /b) 2SIN 2 9) )l/2

Z 2.0 m =,.0 05X :5; 0_<8 ,27

1.5

6 I I I

0.75 0.9 1.0 I.1 1.2 1.3

c/b

Fig. 39 Normal-force coefficient for elliptic cones versus

the ellipticity ratio a/b at M =3.0.

16300



-PRESENT HPP

USSAERO

ab =.0I
-I.6 -

R(X,e)=ax/(COS 2 e +
(alb)2 SIN 26 1/2

-1.4 -~ OX <51 ; 0 :s8 :52..r

\X =0 , MCO z3.0
QG

-1.2-

-I.0
II I

0.75 0.9 1.0 I.1 1.2 1.3

a/b

Fig. 40 Pitching moment coefficient for elliptic cones
versus the ellipticity ratio a/b at M =3.0.

16 4



08

~ ob =.0I

X-G -2.0

R(X,8) ax/(COS2 e+(a/b) 2 SIN 2 )I1 2

3.0 OX <5 ; 05 2-7r -1.8

XG=O, Mo= 3.0 E
,Q.

* 2.5 -1.6 +
C M& Mq

+ 2.0 -- .

.7 CN .,,.'CNq

1.5 - a -1.2

1.0- - 1.0

I- I - 1 1

0.75 0.9 1.0 1.1 1.2 1.3

a/b

Fig. 41 Damping-in-pitch normal force coefficient and
damping-in-pitch moment coefficient for elliptic
cones versus the ellipticity ratio a/b at M-=3.0.

165



xx

0 W

o 6q 6

0 0 .-

0

x u
00

d7N N I3

N I-166



C4.J .

N - - 0

X~ 0

** _ _ _ _ _

N ~~A.'
d 0 .. 4



0 0

ul C

:nI -

coV

N V) V
0 (Z 1L.

VI~~ C)02

x

VI P()

m 0

do 7V38

168



00

0 ) 0L-

d d

w _U

0 m

N
E54 0

C: - 0

0 0 0 0

L -. I II

N 0 N IT

0 1.!
I. *

169



C) 0

ad c
0 *ri Q

0 :4

+ PO

00
0 .00

170



0.
00

4- 0

* Im N:0 0

K0.
1 0 J 4)

o j o c z
zn

c.4 0

4) -

vvi -o-.

*1 

-1 k l 
:z

0 4)

t 0c2 I.

N N N 0(. tv

dO -lV3

* NU, i~171



PRESENT HPP /
SLENDER WING /

3 THEORY /

- CP
2 . ... . " Z

7=.Ol

n aX=I.O MMz=2.0

.. .

" ~=. 2 .4. .-- "-" "

--a/b 0.75 -/a/b--1.O0

-2 U
-2 - /-p

Fig.48 resuredisribtionperuni anle f atac

Fi.con and arssr flt i to e r n t geo atta.2.0

172



- E

4 ..

- xi

W a-

00

-j4

H0

a.

(ZOEE (:E

. J'~ - -- cr

- UO

w N N Ell

j - 173



BUNDLED TRIPLET METHOD

DOMAIN OF INFLUENCE

Fig. .50. Sketch Showing the Domain of Influence Based an the
Bundled Triplet Method.

174



-- PRESENT METHOD

DEVAN (REF. 35) X = I

USSAERO (REF. 2 e

0.3 R(X, e)=.364X(1+1/3COS3e)
o_5 x_ :sI, 0<_ 8_. 2"-r

0.2 -

0 .1 I I I I

0 30 60 90 120 150 180

& (DEG)

Fig. 51 Steady Pressure Distributions for an Asymmetric Cone at
M = 2.0 and Angle of Attack a 00.

0T



-PRESENT METHOD

DEVAN (REF. 35)

USSAERO (REF 2)

x=l

0.3 R(X, e)=.364X(I-I/2COS 9) - -

Cp o_5 < 5I, 0_5e 52r

0.2/

0 .I I I

0 30 60 90 120 150 180

& (DEG)

Fig. 52 Steady Pressure Distributions for an Asymmetric Cone nt
M = 2 .0 and Angle of Attack a = 00.



- PRESENT METwr)D e x -I
DEVAN (REF. 35)
U SS AERO (REF. 2)

.30-~R (x,Be).2X/(cos2 e e+1/4 SIN 2 e) /2

.25-

.20-

.15-

.10-

.05-
0 20 40 60 80 100 120 140 160 180

e(DEG)

Fig. 53 Steady Pressure Distributions for an Elliptic Cone a(
M- 2.0 and Angle of Attack a = 50.

1.7



- PRESENT METHODLJ
USSAERO (REF 21) bO
HPP METHOD (REF.7)X

R-ax/Cos e+(o/b SIN e)1/

xG 0

2 a -7 -2,0

~~b- 75

-- 92 0--..- 10 -11/

1.3

0 20 5.0 4.0 1.0 2.0 3.0 40

MACH NUMBER, MW MACH NUMBER, M O

a) Normal Force Derivatives b) Pitch moment Derivatives

0/b .75

1.

10 20 30 40 10 2.0 3.0 40

MACH NUMBER. M c MACH NUMBER, M c

D:. amping Normal Force Derivatives d) Damping Moment Derivatives

Fig. 54 Stability Derivatives of' a Famnily of Elliptic Cones ast
Various Mach Number-s.

178



re

n 3

Fig 55 ClnrclFute hwn w VbaigMds

0179



- PRESENT METHOD

o LMOC (REF. 38)

40 RL =1.0 DOWELL 81 WIDNALL(REF
&R/L-O.1

0

0 ( 2 3 4 5

n

Fig. 56 Real Part of the Generalized Aerodynamic Force Q,,
Versus Circumferential Mode Number.

I1



-PRESENT METHOD

0 LMOC (REF. 38)

0 R/L -I.0
A R/L- 0. DOWELL &k WIDNALL (REF

1.2- M~ - -/

= K - 1.0

0 .8

n

Fig. 5-1. Imaginary Part of the Generalized Aerodynamic Force Q,,
Versus Circumferential Mode Number.

181



A=3 TRIANGULAR WING A =3 SWEPT WING

32.4" 33.6"

q: 
-2" 

.-
I'L 26"

q450

(a) 

(b)

Fig. 58 Sketches of Wing-Body Configurations

a) Aspect Ratio AR = 3 Triangular Wing-Body

b) Aspect Ratio AR = 3 Swept Wing-Body

182



p 0 Bi
~0

10 -

N C-

-00

0 O0

LrA-

w (14 O t 0 1

w IQ I

*~ LCL I

LLJJ
_ b

clLW 000E c

0 Q- 0 0

(r f)U 0 0 0
0r w IV N a

C E
*3 

N 
w1

'10 2 C

0 D0

0

1831



0

0 9P

In m
0 u

(I)

~00

N CD 10 0 q~

ww

_r N

(0 0

0'r w =c

0i 002
yO~~~l 0c oL0it)

04- 0

4J-4

1841



=>V

M c

CONICAL COORDINATES s, 7/, e
i I  CYLINDRICAL COORDINATES X, e,

Fig. 61 conical Coordinate and cylindrical Coordinate systems
for a circular Cone.

185

0 " • •l II lIl III l


